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ABSTRACT

DISTRIBUTIONALLY ROBUST MACHINE INTELLIGENCE
FOR MEDICINE AND SCIENTIFIC DISCOVERY

Michael S Yao
James C Gee

Osbert Bastani

Machine learning systems are becoming increasingly adopted in high-stakes applications from
clinical medicine to scientific discovery. In these settings, the predictions made by learned algo-
rithms can have profound consequences. While modern machine learning models have achieved
impressive empirical performance, they often behave unpredictably outside their training distri-
bution, raising concerns about their reliability, fairness, and safety. These limitations are especially
pronounced in domains where failure can be costly or irreversible, such as healthcare and scientific
discovery. As a result, there is a growing need for Al systems that are not only performant, but

also safe and generalizable when faced with new, diverse, and unforeseen inputs in the wild.

This dissertation investigates how we can design such ML systems to make reliable predictions
across the range of inputs they might encounter in the real world. We explore this question through
two complementary hypotheses. First, by incorporating structured priors generated from natural
language and domain knowledge of biomedical systems directly into model architectures, we can
build systems that are more generalizable. We show how such ML systems that are interpretable-
by-design are better aligned with human reasoning to solve challenging domain-specific tasks.
Second, we show how leveraging adversarial supervision from auxiliary neural networks can help
us estimate when and where black-box model predictions can be trusted. We demonstrate how
this framework can be readily adapted to solve a wide range of optimization problems in medicine
and science. In summary, this dissertation provides a principled framework for making machine

learning systems more aligned, robust, and actionable in safety-critical biomedical applications.
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ing Corollary 1 and (D.9), we show that it is possible to extend DynAMO to
leverage a mixed x2-divergence that equally weights both x2-divergence and KL-
divergence to penalize the original MBO objective. We evaluate this specialized
implementation of DynAMO against baseline Dyn AMO and vanilla optimiza-
tion methods, and report the pairwise diversity oracle score achieved by the
128 evaluated designs. Metrics are reported mean (> confidence interval) 51055 1()
random seeds, where higher is better. Bolded entries indicate average scores
with an overlapping 95% confidence interval to the best performing method.
Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics in-
dicate the best (resp., second best) for a given backbone optimizer. Minimum
novelty and L; coverage scores are reported in Supp. TableD.6. . . . . . . . ..
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TABLE D.6

TABLE D.7

TABLE D.8

TABLE D.9

Diversity of design candidates using mixed x2-divergence DynAMO (cont.).
Using Corollary 1 and (D.9), we show that it is possible to extend DynAMO to
leverage a mixed x2-divergence that equally weights both x2-divergence and KL-
divergence to penalize the original MBO objective. We evaluate this specialized
implementation of DynAMO against baseline DynAMO and vanilla optimiza-
tion methods, and report the minimum novelty and L; coverage oracle scores
achieved by the 128 evaluated designs. Metrics are reported mean (%>’ confidence
interval) across 10 random seeds, where higher is better. Bolded entries indicate
average scores with an overlapping 95% confidence interval to the best per-
forming method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt.
Gap) metrics indicate the best (resp., second best) for a given backbone opti-
mizer. Pairwise diversity scores are reported in Supp. Table D.5. . . . ... ..
Comparison of design quality against model-free optimization methods. We
evaluate DynAMO and other MBO methods against model-free optimization
methods. We report the maximum (resp., median) oracle score achieved out
of 128 evaluated designs in the top (resp., bottom) table. Metrics are reported
mean (9% confidence interval) 5crag5 10 random seeds, where higher is better. All
metrics are multiplied by 100 for easier legibility. Bolded entries indicate aver-
age scores with an overlapping 95% confidence interval to the best performing
method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap)
metrics indicate the best (resp., second best) for a given backbone optimizer. .
Comparison of design diversity against model-free optimization methods.
We evaluate DynAMO and other model-based methods against model-free op-
timization methods. We report the pairwise diversity (resp., minimum nov-
elty) oracle score achieved by the 128 evaluated designs in the top (resp., bot-
tom) table. Metrics are reported mean(°>’ confidenceinterval) 501955 10 random
seeds, where higher is better. All metrics are multiplied by 100 for easier leg-
ibility. Bolded entries indicate average scores with an overlapping 95% con-
fidence interval to the best performing method. Bolded (resp., Underlined)
Rank and Optimality Gap (Opt. Gap) metrics indicate the best (resp., second
best) for a given backbone optimizer. . . . . .. ... ... L oL oL
Comparison of design diversity against model-free optimization methods
(cont.). We evaluate DynAMO and other model-based optimization meth-
ods against model-free optimization methods. We report the L coverage score
achieved by the 128 evaluated designs. Metrics are reported mean (95% confidence
interval) 40ross 10 random seeds, where higher is better. All metrics are multi-
plied by 100 for easier legibility. Bolded entries indicate average scores with an
overlapping 95% confidence interval to the best performing method. Bolded
(resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate the
best (resp., second best) for a given optimizer. . . . .. .. ... ... ... ...
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TABLE D.10 Pairwise diversity as a predictor for downstream secondary exploration. We
report the pairwise diversity achieved by 128 proposed designs (PD@128);
and also the variance of the distribution of oracle secondary objective values
of those same 128 proposed designs. Note that the secondary objectives are not
explicitly optimized against in the offline MBO setting. Metrics are reported
mean(95% confidence interval) 401055 10 random seeds, where higher is better (i.e.,
more diverse designs and better capture of the range of secondary objective
values). All metrics are multiplied by 100 for easier legibility. . . . . . ... ... 196
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FIGURE 1.1

FIGURE 1.2

FIGURE 1.3

FIGURE 1.4

LIST OF ILLUSTRATIONS

Synthetic HbAlc lab values derived from multimodal patient data enables
interpretable and generalizable opportunistic diabetes screening. Raw pa-
tient data can be high-dimensional, multimodal, and therefore difficult to in-
terpret. We leverage clinical knowledge to determine which clinically derived
phenotypic features (CDPs) and image-derived phenotypic features (IDPs)
are relevant for opportunistic diabetes screening. Using the IDP extraction
pipeline from MacLean et al. (2021), we estimate quantitative IDPs from ab-
dominal computed tomography (CT) scans associated with an increased risk
for diabetes. We use these interpretable IDPs and CDPs from health record

data to train generalizable diabetes risk prediction models (Chapter 4). . . . .

Adapting generalist LLMs as clinical assistants for medical image ordering.
In Chapter 3, we show that traditional large language model (LLM) systems
struggle with recommending evidence-based imaging studies to order for pa-
tients. To overcome this limitation, we explicitly enforce the LLM to predict
the most relevant medical guideline from a corpus for the patient. We can
then directly look up the most appropriate imaging study in the guidelines
document to recommend a final imaging study. This simple, interpretable
zero-shot strategy allows us to construct an LLM pipeline that outperforms
even fine-tuned biomedical models, enabling consumer-grade LLMs to gen-

eralize to a real-world clinical task. . . . . . .. . . ... . ... ... . ... ..

Poor model generalizability limits the utility of traditional optimization
methods in the offline setting. Consider a black-box machine learning model
fo : X = R (ie., a ‘fitted surrogate model’) trained on a fixed dataset D,, =
{(xi,9i)}I, (shaded region) to approximate a true function in nature f : X —
R (i.e., an ‘oracle objective”). Evaluation of fy on inputs that are grossly out-of-
distribution compared to D,, (e.g., cross) can result in inaccurate model pre-
dictions (e.g., diamond) compared to in-distribution inputs to fy (e.g., star).
In Chapter 5, we address black-box model generalizability in the context of

offline optimization using adversarial feedback. . . . . .. ... ... ... ...

Improving the diversity of designs proposed in offline optimization. Tra-
ditional model-based optimization (MBO) (Trabucco et al., 2021) techniques
can generate high-scoring designs, although often at the expense of the diver-
sity of proposed designs. Ideally, the final set of candidates should be of high
quality while capturing multiple ‘modes of goodness.” For example, although
there are 3 unique global maxima (stars) in the 2D Branin (Branin, 1972) op-
timization problem, traditional Bayesian optimization (BO-qUCB) proposes
designs clustered around only a single optima (diamonds). In contrast, we
show in Chapter 6 how to modify the MBO objective to discover diverse and

high-quality designs (circles). . . . ... ... ... ... .. ... .. .. ...,
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FIGURE 3.1

FIGURE 3.2

FIGURE 3.3

FIGURE 3.4

LLMs struggle with diagnostic imaging ordering. We evaluate Claude Son-
net-3.5, a state-of-the-art language model, on its ability to order imaging stud-
ies given an input patient case description, or “one-liner.” The LLM is evalu-
ated on five representative subsets of the RadCases dataset introduced in our
work. To demonstrate the difficulty of ordering diagnostic imaging studies
in practice, we show that (a) Claude Sonnet-3.5 frequently orders imaging
studies that are not aligned with the ACR Appropriateness Criteria. (b) The
language model also frequently orders unnecessary imaging studies, and (c)
can incorrectly forego imaging even when it is clinically warranted. In our
work, we introduce an LLM inference strategy to significantly improve the
performance of language models according to these important clinical met-

rics. Error bars represent £95% CI over n = 5 independent experimental runs. 31

Baseline LLM performance on the RadCases dataset. (a) We query a lan-
guage model to return the most relevant diagnostic radiology ACR AC Topic
given an input patient one-liner description. We then query the ACR AC to
return the most appropriate diagnostic imaging study (or lack thereof) given
the predicted topic. (b) We evaluate six language models on their ability
to correctly identify the ACR AC Topic most relevant to a patient one-liner.
Open-source models are identified by an asterisk, and the best (second best)
performing model for a RadCases dataset partition is identified by a dagger

(double dagger). Error bars are £95% Clovern =5runs. . . . . ... ... ..

Optimizing LLM performance on the RadCases dataset. (a) We explore 4
strategies to further improve LLM alignment with the ACR AC: RAG and ICL
provide additional context to an LLM as input, COT encourages deductive
reasoning, and MFT optimizes the weights of the LLM itself. Each optimiza-
tion strategy is independently implemented and compared against the base-
line prompting results in Figure 3.2 for (b) Claude Sonnet-3.5 and (c) Llama
3. Error bars represent £95% CI over n = 5 independent experimental runs.

Comparison of baseline and evidence-based inference pipelines with Clau-
de Sonnet-3.5. (a) Using our evidence-based inference pipeline, we query
the LLM to predict the single ACR AC Topic most relevant to an input pa-
tient one-liner, and then refer to the ACR AC guidelines to make the final
recommendation for diagnostic imaging. An alternative approach is the base-
line inference pipeline where we query the LLM to recommend a diagnostic
imaging study directly without the use of the ACR AC. (b) Our evidence-
based pipelines (both using baseline prompting and optimized using chain-
of-thought (COT) prompting) significantly outperform the baseline pipeline
by up to 62.6% (two-sample, one-tailed, homoscedastic ¢-test; p < 0.0001 for
all RadCases datasets). At the same time, they also reduce the rates of both
(¢) unnecessary imaging orders and (d) missed imaging orders (two-sample,
one-tailed, homoscedastic ¢-test; p < 0.05 for all RadCases datasets). Error

bars represent +95% CI over n = 5 independent experimental runs. . . . . . .
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FIGURE 3.5

FIGURE 3.6

FIGURE 4.1

Comparison of Llama 3 baseline and evidence-based inference pipelines.
(a) Using our evidence-based inference pipeline identical to that shown in
Fig. 3a in the main text, we query the Llama 3 to predict the ACR AC Topic
most relevant to an input patient one-liner, and programmatically refer to the
evidence-based ACR AC guidelines to make the final recommendation for
diagnostic imaging (Evidence-Based). An alternative approach is the base-
line inference pipeline where we query the LLM to recommend a diagnos-
tic imaging study directly without the use of the ACR AC (Baseline). Be-
cause there was no consistently optimal prompting or fine-tuning strategy
that outperformed baseline prompting in Fig. 3.3c, we only empirically evalu-
ated the baseline Evidence-Based inference strategy here. (b) Our evidence-
based pipeline significantly outperforms the baseline pipeline by up to 57.3%
(two-sample, one-tailed, homoscedastic t-test; p < 0.0001 for all RadCases
datasets). At the same time, the also reduce the rates of both (c¢) unnecessary
imaging orders and (d) missed imaging orders (two-sample, one-tailed, ho-
moscedastic t-test; p < 0.002 for all RadCases datasets). Error bars are +95%

Clover n = 5 experimentalruns. . . .. ... ... ................

Retrospective study of clinician- and LLM- ordered imaging studies. We
compare the diagnostic imaging studies ordered by the prompt-optimized
LLMs Claude Sonnet-3.5 and Llama 3 against those ordered by clinicians in a
retrospective study. Compared with clinicians, Claude Sonnet-3.5 and Llama
3 achieve the same or better (a) accuracy scores; and (b) false positive rates
(i.e., the rate at which a patient received at least one unnecessary imaging
recommendation); (c) false negative rates (i.e., the rate at which a patient
should have received an imaging workup but did not); and (d) F; scores. (e)
We observe that Claude Sonnet-3.5 orders a greater number of recommended
imaging studies compared to clinicians. (f) Claude Sonnet-3.5 and Llama 3
order imaging studies that are more similar to one another than to clinicians

(two-sample, two-tailed homoscedastic t-test; p < 0.0001). . . . . . .. ... ..

Overview of Penn Medicine BioBank (PMBB) imaging data. (a) Bar graph
shows the number of studies within the Penn Medicine BioBank by imaging
modality. The number of studies per Penn Medicine BioBank capita is the av-
erage number of studies per patient within the Penn Medicine BioBank. (b)
Line graph shows the number of imaging studies acquired per year contained
within the Penn Medicine BioBank by imaging modality. (c) Line graph of
1 — CDF, where CDF is the cumulative distribution function. 1 — CDF cor-
responds to the proportion of patients (by modality) according to number
of examinations. (d) Histogram shows the time between sequential repeat
imaging studies by patient for the four most common imaging modalities.
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FIGURE 4.2

FIGURE 4.3

FIGURE 5.1

FIGURE 5.2

FIGURE 6.1

Comparing principal component distributions of six image-derived phe-
notype (IDP) metrics computed from abdominal CT scans from 1276 anon-
ymized patients in the Penn Medicine BioBank. These image-derived phe-
notypes included liver CT attenuation, spleen CT attenuation, liver volume,
spleen volume, visceral fat volume, and subcutaneous fat volume. Using prin-
cipal component analysis (PCA), the principal component of these image-
derived phenotypes was extracted and its distribution was plotted as a his-
togram for patients stratified by different clinical diagnoses. Bar graphs show
different image-derived phenotype principal component distributions in pa-
tients without diagnoses (gray bars) versus in patients diagnosed with (a)
obesity (n = 91), (b) obstructive sleep apnea (n = 201), and (c) hyperten-
sion (n = 1082). Image-derived phenotype principal component distribu-
tions in patients without diagnoses (gray bars) versus in patients diagnosed
with (d) nonalcoholic fatty liver disease (NAFLD; n = 429) and (e) diabetes
(n = 790). (f) Genitourinary diseases (n = 1202), which are not clinically
associated with these image-derived phenotype metrics, were not associated
with a statistically significant different principal component distribution com-
pared with healthy patients. p values were calculated by comparing distri-
butions of patients with and without the disease according to a two-sample

Kolmogorov-Smirnov test for goodness of fit. . . . ... ... ... ... .. ...

Assessing for algorithmic bias in SynthAlc encoders. We plotted the 95%
confidence interval of the mean difference between the SynthAlc model out-
put and ground truth HbAlc as a function of self-reported (a) gender and
(b) BMI category. p values comparing the differences in SynthAlc model
performance when stratified by gender (two-sample ¢-test) and BMI category

(one-way ANOVA) areshown.. . . .. ... ... ... .......

Penalized LogP score maximization sample candidate designs. (Left) The
molecule with the highest penalized LogP score of 11.3 in the offline dataset.
Here, we show the 100th percentile candidate molecules according to the sur-
rogate objective generated from (Middle) vanilla BO-qEI and (Right) GABO.
Teal- (white-) colored atoms are carbon (hydrogen). Non-hydrocarbon atoms

are underlined in the SMILES (Weininger, 1988) string representations. . . . .

100th percentile oracle scores versus k-shot oracle budget size. We plot the
100th percentile oracle penalized LogP score averaged across 10 random seeds

as a function of the number of allowed oraclecalls k. . . .. ... ... ... ..

Sampling batch size ablation. We vary the sampling batch size b in Al-
gorithm 3 between 2 and 512, and report both the (left) Best@128 Oracle
Score and (right) Pairwise Diversity score for 128 final designs proposed by a
DynAMO-BO-qEI policy on the TFBind8 optimization task. We plot the mean

4 95% confidence interval over 10 randomsseeds. . . . . . . . . . ... ... ..
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FIGURE 6.2

FIGURE 6.3

FIGURE 6.4

FIGURE A.1

FIGURE A.2

3 hyperparameter ablation. We vary the value of the KL-divergence regular-
ization strength hyperparameter 3 in Algorithm 3 between 0.01 and 100, and
report both the (left) Best@128 Oracle Score and (right) Pairwise Diversity
score for 128 final design candidates proposed by a DynAMO-BO-qEI policy
on the TFBind8 optimization task. We plot the mean + 95% confidence in-
terval over 10 random seeds. The dotted horizontal line corresponds to the
B = 0 experimental mean score, which could not be plotted as a point on the

logarithmic z-axis. . . . . .. ... ... ... ..

7 temperature hyperparameter ablation. We vary the temperature hyperpa-
rameter 7 in Algorithm 3 between 0.01 and 100, and report both the (left)
Best@128 Oracle Score and (right) Pairwise Diversity score for 128 final de-
signs proposed by a DynAMO-BO-qEI policy on the TFBind8 optimization
task. We plot the mean + 95% confidence interval over 10 random seeds. . .
Oracle evaluation budget ablation. We vary the allowed oracle evaluation
budget £ in Algorithm 3 between 16 and 1024, and report both the (first two
rows) Best@128 Oracle Score and (last two rows) Pairwise Diversity score for
k final designs proposed by both DynAMO-augmented and base optimizers
on the TFBind8 task. We plot the mean + 95% confidence interval over 10

random seeds. . . . . . .. e

ACR AC Panel counts in the RadCases dataset. As of June 2024, there are
224 ACR AC Topics that each have at least one assigned parent ACR AC Panel.
Panels are more general categories for conditions, and there are 11 as of June
2024: Breast, Cardiac, Gastrointestinal, Gyn and OB, Musculoskeletal, Neu-
rologic, Pediatric, Polytrauma, Thoracic, Urologic, and Vascular. To illustrate
the distribution of conditions present in the RadCases dataset, we plot the
counts of each of these 11 parent ACR AC Panels for the (A) Synthetic; (B)
USMLE; (C) JAMA; (D) NEJM; and (E) BIDMC subsets of the RadCases

dataset. . . . . . e

Baseline LLM performance on ACR AC Panel classification using the Rad-
Cases dataset. In Figure 3.2b, we evaluate six state-of-the-art large language
models (LLMs) on their ability to correctly assign 1 of 224 ACR AC Topics
to an input one-liner. Here, we include analogous results on the related ACR
AC Panel classification task, which queries an LLM to correctly assign 1 of 11
ACR AC Panels to an input one-liner. Because ACR AC Panels are much more
coarse-grained when compared to Topics, a language model’s accuracy on this
task can help assess the model’s ability to identify the general body part or or-
gan system affected by pathophysiology. However, accuracy on this task is not
helpful for ordering image studies, as there is no clear method for assigning
a “correct” imaging study given only an ACR AC Panel. Open-source models
are identified by an asterisk, and the best (second best) performing model for
a RadCases dataset partition is identified by a dagger (double dagger). Error

bars represent £95% CI over n = 5 independent experimental runs. . . . . . .
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FIGURE A.3

FIGURE A4

FIGURE A5

Retrieval-augmented generation (RAG) performance versus retriever algo-
rithm. To optimize RAG for LLM accuracy on the ACR AC Topic classification
task, we investigated the use of 8 different retrieval algorithms to use in RAG:
(1) Random, which randomly documents from the corpus over a uniform
probability distribution; (2) Okapi BM25 bag-of-words retriever; (3) BERT
and (4) MPNet trained on unlabeled, natural language text; (5) RadBERT
from fine-tuning BERT on radiology text reports; (6) MedCPT leveraging
a transformer trained on PubMed search logs; and (7) OpenAl (text-em-
bedding-3-large) and (8) Cohere (cohere.embed-english-v3) embedding
models from OpenAl and Cohere for Al Using (a) Claude Sonnet-3.5 and
(b) Llama 3, we retrieve £ = 8 documents from the ACR AC narrative guide-
lines corpus using each retriever, and compare each method against baseline
ACR AC Topic accuracy achieved by each model. Error bars represent +95%

Clover n = 5 independent experimentalruns. . . . . . . ... ... ... ....

In-context learning (ICL) performance versus retriever algorithm. To op-
timize ICL for LLM accuracy on the ACR AC Topic classification task, we in-
vestigated the use of 8 different retrieval algorithms to use in ICL identical to
those explored in RAG (see caption of Supp. Fig. A.3). Using (a) Claude
Sonnet-3.5 and (b) Llama 3, we retrieve k = 4 example one-liner/Topic pairs
from the RadCases-Synthetic dataset corpus using each retriever, and com-
pare each method against baseline ACR AC Topic accuracy achieved by each
model. Note that a separate synthetically generated dataset (generated using
Meta Llama 2 instead of OpenAl GPT-3.5) was used to evaluate ICL on the
RadCases-Synthetic dataset to avoid data leakage. Error bars represent £95%

Clover n = 5 independent experimentalruns. . . . . . . ... ... .......

In-context learning (ICL) performance versus retriever budget. Using the
subjectively best retriever algorithm evaluated in Supp. Fig. A4 (i.e. the
MedCPT retriever), we ablated the number of ICL examples retrieved by the
retriever to pass as context to Claude Sonnet-3.5. Note that the purple solid,
blue medium-dashed, black long-dashed, green dotted-dashed, and red dot-
ted horizontal lines correspond to the baseline, no-ICL accuracy scores of
Claude Sonnet-3.5 on the Synthetic, USMLE, JAMA, BIDMC, and NEJM sub-
sets of the RadCases dataset, respectively. For the USMLE, JAMA, and NEJ]M
subsets, we find that the performance of the model increases as the number
of ICL examples increases from k = 1 to k = 128. Note that a separate syn-
thetically generated dataset (generated from Meta Llama 2 instead of OpenAl
GPT-3.5) was used to evaluate ICL on the RadCases-Synthetic dataset to avoid
data leakage. Error bars represent £95% CI over n = 5 independent experi-

mental Tuns. . . . . . . s
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FIGURE A.6

FIGURE A7

FIGURE A.8

Chain-of-thought (COT) prompting performance versus reasoning algo-
rithm. To optimize COT for LLM accuracy on the ACR AC Topic classification
task for both (a) Claude Sonnet-3.5 and (b) Llama 3, we investigated 4 differ-
ent COT reasoning methods: (1) Default reasoning, which does not specify
any particular reasoning strategy for the LLM to use; (2) Differential diag-
nosis reasoning, which encourages the model to reason through a differential
diagnosis to arrive at a final prediction; (3) Bayesian reasoning, which en-
courages the model to approximate Bayesian posterior updates over the space
of ACR AC Topics based on the clinical patient presentation; and (4) Analytic
reasoning, which encourages the model to reason through the pathophysiol-
ogy of the underlying disease process. We compare each method against the
baseline ACR AC Topic accuracy achieved by each model. Error bars repre-

sent £95% CI over n = 5 independent experimental runs. . . . . ... ... ..

Combining in-context learning (ICL) and chain-of-thought (COT). We ob-
served that ICL (using the MedCPT retriever) and COT (using the Default
reasoning strategy) were effective prompting strategies to improve the perfor-
mance of Claude Sonnet-3.5 and/or Llama 3 in Supp. Figures A.4 and A.6.
We combine both of these strategies together to evaluate if the combination of
these techniques together could further improve model performance of both
(a) Claude Sonnet-3.5 and (b) Llama 3. We compare each method against the
baseline, ICL-only, and COT-only ACR AC Topic accuracy achieved by each
model. Error bars represent £95% CI over n = 5 independent experimental

Model fine-tuning (MFT) algorithm evaluation with Llama 3. We evaluate
5 different fine-tuning experimental setups in our MFT experiments: quan-
tized low-rank adaptation (QLoRA) witharankof (1) r = 16 and (2) r = 512;
low-rank adaptation (LoRA) with a rank of (3) » = 8 and (4) r = 64; and (5)
Full Rank model fine-tuning. We use an « scaling value of 8 for all QLoRA
and LoRA experiments. To construct the MFT training dataset, we use either
(a) all n = 156 labeled one-liners from the RadCases-Synthetic dataset; or
(b) a Mixed dataset including 50 randomly selected cases from each of the 5
RadCases dataset subsets for a total of n = 250 labeled one-liners. The first
scenario simulates a setting where we can only fine-tune models on syntheti-
cally generated data due to privacy concerns, and the latter scenario simulates
a setting where we are able to train on real patient data sampled from the rel-
evant distribution(s) of interest. Note that a separate synthetically generated
dataset (generated from Meta Llama 2 instead of OpenAI GPT-3.5) was used
to fine-tune the base model for evaluation on the RadCases-Synthetic dataset
to avoid data leakage. Error bars represent £95% CI over n = 5 independent

experiments. . . . . . ... e e
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FIGURE A.9

FIGURE A.10

FIGURE A.11

FIGURE C.1

FIGURE C.2

Evaluating medical foundation models fine-tuned on Llama LLMs. Sepa-
rate from the results presented in Supp. Figure A.8, an alternative approach
to model fine-tuning is to instead leverage language models fine-tuned on
large corpuses of domain-specific medical text. Such foundation models in-
clude BioMedGPT-7B (Zhang et al., 2024); MeLLaMA-70B (Xie et al., 2024);
and Meditron-70B (Chen et al., 2023d). We evaluate their accuracies on pre-
dicting correct ACR AC Topic labels; none of the three medical foundation
models evaluated outperformed the base Meta Llama 3 70B model with sta-
tistical significance on any of the RadCases datasets. Our results are consistent
with findings reported by prior work (Jeong et al., 2024; Dorfner et al., 2024;
Hager et al., 2024; Maharjan et al., 2024) and highlight the challenge in fine-
tuning language models specifically for RadCases and other medical tasks.
Error bars represent £95% CI over n = 5 independent experimental runs. . .
Ablating the number of ACR AC Topic predictions in retrospective study
of clinician-ordered versus LLM-ordered imaging studies. In Figure 3.6, we
show the results of our retrospective study evaluating diagnostic imaging or-
ders of both LLMs and clinicians—both Claude Sonnet-3.5 and Llama 3 were
prompted to predict the single m = 1 best ACR AC Topic for an input patient
description. Here, we vary the maximum number m of ACR AC Topic pre-
dictions requested from each language model on the z-axis. We compare the
(a) accuracy scores; (b) false positive rates (i.e., the rate at which a patient
received at least one unnecessary imaging recommendation); (c) false neg-
ative rates (i.e., the rate at which a patient should have received an imaging
workup but did not); (d) F; scores; (e) number of recommended imaging
studies; and (f) similarity of ordered imaging studies of Claude Sonnet-3.5

and Llama 3 versus m. . . . . . . o e

User interface for prospective study. The LLM is asked to predict up to three
ACR Appropriateness Criteria (AC) Topics that may be relevant for the pa-
tient case, and the table of corresponding ACR AC recommendations is dis-
played as reference to the user. In questions where LLM guidance is not made
available, the right column does not show any recommendations and instead

shows “LLM guidance is not available for this patient scenario.” . . ... ...

Distribution of oracle penalized LogP scores. We plot the distribution of
oracle scores for the top 128 surrogate model-ranked designs in black, and the
distribution for all 2,048 generated designs in light gray for each of the offline
model-based optimization methods assessed in our work across 10 random
seeds. While GABO and BO-qEI have similar distributions, GABO is able to
more reliably rank top-performing designs higher, such that these designs can

be identified even under limited oracle query budgets. . . . . . ... ... ...

Best oracle penalized LogP value versus optimization step count. We plot
the best Penalized LogP score averaged across 10 random seeds as a function
of the number of surrogate queries made over the optimization trajectory. All
offline model-based optimization (MBO) methods assessed consistently con-
verge within the allowed oracle query budget used in our experimental setup

as described in Section 5.5. . . . . . . . ...
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FIGURE D.1

FIGURE D.2

Sample T-weighted probability distributions. We plot (7 = 1.0)-weighted
distributions p},(y) (blue) versus the original distribution of oracle scores y
in the public offline dataset D ( ) for the 6 offline optimization tasks in
our experimental evaluation suite: (1) TFBind8 (top left); (2) UTR (top mid-
dle); (3) ChEMBL (top right); (4) Molecule (bottom left); (5) Superconduc-
tor (bottom middle); and (6) D’Kitty (bottom right). DynAMO penalizes a
model-based optimization objective to encourage sampling policies to match
the diversity of (high-scoring) designs in the 7-weighted distribution. The 2-

axis represents the normalized oracle scores. . . . . . ... .. ... ... .. ..

Distribution of generated design quality and diversity scores. We plot the
distributions of the (top left) oracle score; (top right) minimum novelty; and
(bottom) pairwise diversity of the & = 128 proposed designs from a sin-
gle representative experimental run using the CMA-ES backbone optimizers
with and without DynAMO on the TFBind8 task. Dashed blue (resp., dot-
ted green) lines in the top panels represent the mean score achieved by the
Baseline CMA-ES (resp., DynAMO-CMA-ES) method from the experimental

1
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PREFACE

Certainly! Below is a draft of a Preface for your dissertation written in a formal yet personal tone.

Most of you will have seen such a prefix in your conversations with ChatGPT; I hope it illustrates
not only how ubiquitous AI has become in our everyday lives, but also how it shapes our trust in
and relationships with one another. More importantly, tools such as (but certainly not limited to)
Al have the potential to erode trust between individuals if not used safely and responsibly. To this
end, I was inspired to pursue my dissertation research in this field because I believed (and still do)

that trustworthy Al is one of the most important problems to work on—now more than ever.

This dissertation is oriented around how we can ensure the safe and responsible usage of Al tools. I
specifically look at this question through the lens of interpretability and generalizability—how can we
ensure that the ML systems we use in real-world pipelines yield reliable predictions for the many
different possible inputs to the system? In this work, we explore two central hypotheses to answer
this question: (1) if we use prior knowledge to build better ML models that align with how we
as humans think, then those ML models might better generalize like humans do; and (2) we can

better learn from prior data to determine when and where to trust black-box ML predictions.

Iinitially started my research career at the lab bench working on projects like targeted gene-editing
therapies and designing targeted cancer treatments (shamelessly citing Suzuki et al. (2022) and
Abedi et al. (2022)). While I should no longer be trusted with a pipette, these early experiences
were formative in my decision to research trustworthy Al as it specifically pertains to the biomed-
ical problems, such as scientific discovery and clinical medicine. During my graduate training, I
have been fortunate to think critically about how Al can affect domains such as medical imaging,
emergency medicine, scientific innovation, and clinical trial design: asking and answering scien-
tific questions shaped by my own lived and ongoing experiences. I look forward to sharing the

fruits of these works with you in the remainder of this dissertation.
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CHAPTER 1

INTRODUCTION

Modern machine learning (ML) systems have demonstrated extraordinary capabilities across a
wide range of domains—from materials synthesis (Szymanski et al., 2023; MacLeod et al., 2020)
and drug discovery (Li et al., 2015; Brown et al., 2019) to robotics (Ahn et al., 2020; Ma et al., 2023;
Radosavovic et al., 2022; Huang et al., 2022) and healthcare (Yang et al., 2024c; Adams et al., 2022;
Pyrros et al., 2023; Singhal et al., 2023). These advances have largely been driven by algorithms
that learn strictly from data: given a set of inputs = and outputs y, we are often satisfied with
learning an ML model that is able to identify patterns and correlations in the data without ex-
plicit programming. In this traditional data-centric paradigm, we may not need to know (or even
care) how or why a model prediction was generated. Instead, large and diverse datasets combined
with powerful learning architectures are frequently enough to yield robust performance in many

consumer applications (Al, 2024b; Adams et al., 2022; Szymanski et al., 2023).

While this has been a relatively successful paradigm, it is important to recognize that this is not
how humans learn (Spelke and Kinzler, 2007; Zaadnoordijk et al., 2022; Collins et al., 2024). Hu-
man learning is richly contextual and structured by innate priors, abstract world models, and a
continuous interplay between perception, action, and reflection (Ho et al., 2022; Hafner et al., 2025;
Gottlieb et al., 2013; Agrawal et al., 2016). We do not simply memorize correlations or optimize for
predictive accuracy; we interpret, reason, and build models of how the world works. These inter-
nal models allow us to generalize from limited experience, adapt quickly to new environments,

and navigate uncertainty with resilience and creativity.

The divergence between how machines and humans learn is not merely an academic curiosity; re-
cent evidence has shown that it can have real and pressing consequences. Systems trained purely
from data can be susceptible to spurious correlations (DeGrave et al., 2021; Antony et al., 2023;
Glocker et al., 2023), adversarial input examples (Goodfellow et al., 2015; Mehrotra et al., 2024;

Chang et al., 2025; Han et al., 2024), and failure in out-of-distribution settings (Futoma et al., 2020;



Yang et al., 2022, 2024b) that can degrade the trustworthiness of such applications. Worse, they of-
ten lack the capacity for causal reasoning and ethical judgment (Campbell et al., 2024; Omiye et al.,
2023; Tennant et al., 2025; Joshi et al., 2024). In critical applications, such as education, healthcare,
and science, these limitations can lead to outcomes that are not only suboptimal, but also harmful

(Bastani et al., 2025; Caruana et al., 2015; Zink et al., 2024).

How do we define trustworthiness? We know it when we see it, although achieving an objec-
tive, concrete definition continues to elude us (Floridi and Cowls, 2022; Ibanez and Olmeda, 2022;
Morley et al., 2021; Jobin et al., 2019). However, the consensus among recent work (Li et al., 2025;

Mucséanyi et al., 2023; Wang et al., 2023; Eshete, 2021) includes the following core tenets:

Interpretability. The notion of interpretability is a notoriously challenging property of machine
learning systems to define (Lipton, 2018; Agarwal et al., 2024a; Madsen et al., 2024). For the pur-
poses of this thesis, we define interpretable models as those with semantically meaningful internal
representations of the model’s inputs. These internal feature representations can be abstracted as
concepts that are able to be understood by the model’s human users. A growing body of work has
explored how to build interpretable models from scratch by considering a specialized hypothe-
sis class of learnable functions, such as linear models, concept bottleneck models, (Wu et al., 2025;
Koh et al., 2020; Yang et al., 2023b; Srivastava et al., 2024; Sun et al., 2025) and generalized additive
models (Hastie and Tibshirani, 1986; Yang et al., 2023a; McLean et al., 2014; Caruana et al., 2015).
A common critique with such approaches is that by restricting the hypothesis class to functions
that are interpretable to humans, we may adversely impact model complexity and therefore per-
formance. I argue in this dissertation that this claim need not be true; put simply, it is possible to
design ML pipelines to be both performant and interpretable: for example, we demonstrate this in

the setting of opportunistic diabetes screening in Chapter 4 (Fig. 1.1).

A separate body of work has looked at post-hoc analysis of black-box models (Ribeiro et al., 2016;
Adebayo et al., 2018; Turbé et al., 2023; Yuksekgonul et al., 2023; Lundberg and Lee, 2017). For ex-
ample, Ribeiro et al. (2016) introduced Local Interpretable Model-agnostic Explanations (LIME)

to fit an interpretable model to a black-box model in a local neighborhood in the input space,
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Figure 1.1: Synthetic HbA1lc lab values derived from multimodal patient data enables inter-
pretable and generalizable opportunistic diabetes screening. Raw patient data can be high-
dimensional, multimodal, and therefore difficult to interpret. We leverage clinical knowledge to
determine which clinically derived phenotypic features (CDPs) and image-derived phenotypic
features (IDPs) are relevant for opportunistic diabetes screening. Using the IDP extraction pipeline
from MacLean et al. (2021), we estimate quantitative IDPs from abdominal computed tomography
(CT) scans associated with an increased risk for diabetes. We use these interpretable IDPs and
CDPs from health record data to train generalizable diabetes risk prediction models (Chapter 4).

approximating (and therefore explaining) the local behavior of the black-box model. SHapley
Additive exPlanations (SHAP) was introduced by Lundberg and Lee (2017), and estimates the
average marginal contribution of each feature to the observed model output. However, recent
work have found that such methods can be brittle in practice (Crabbé and van der Schaar, 2023;
Laugel et al., 2019; Ragodos et al., 2024) leading to arbitrarily derived explanations, and have no
guarantee that highlighted features causally influence the model’s decision making (Chou et al.,

2022; Adebayo et al., 2022).

Recent advancements in large language models (LLMs) (OpenAl et al., 2024; Anthropic, 2024) have
also sparked recent work interrogating the interpretability of textual autoregressive models. For
example, Wei et al. (2022) introduced chain-of-thought (Col') prompting to elicit human-readable
reasoning traces, which may help illustrate how an LLM arrives at a final answer (Dutta et al., 2024;
Wei Jie et al., 2024; Zhao et al., 2024). Chain-of-thought and the associated reasoning steps can

therefore offer a glimpse into the model’s inner decision process beyond the classical view of “sim-
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Figure 1.2: Adapting generalist LLMs as clinical assistants for medical image ordering. In Chap-
ter 3, we show that traditional large language model (LLM) systems struggle with recommending
evidence-based imaging studies to order for patients. To overcome this limitation, we explicitly
enforce the LLM to predict the most relevant medical guideline from a corpus for the patient. We
can then directly look up the most appropriate imaging study in the guidelines document to rec-
ommend a final imaging study. This simple, interpretable zero-shot strategy allows us to construct
an LLM pipeline that outperforms even fine-tuned biomedical models, enabling consumer-grade
LLMs to generalize to a real-world clinical task.

ple” next-token prediction (Lyu et al., 2023). Separately, a growing body of literature challenges
whether CoT truly reflects internal reasoning (Chen et al., 2025b). Turpin et al. (2023) found that
LLMs could be manipulated towards a wrong answer in question answering (QA) evaluations and
also plausible CoT traces that hide known underlying biases. Agarwal et al. (2024a) discuss empir-
ical tradeoffs observed between the faithfulness and plausibility of LLM-generated thought pro-
cesses. In Chapter 3, we build on recent efforts (Hicks et al., 2022) to evaluate the real-world utility

of chain-of-thought prompting in eliciting interpretability in autoregressive models (Fig. 1.2).

Generalizability. Generalizability is arguably the core desiderata at the heart of modern ma-
chine learning, as we often seek to train an ML model on one dataset in order to generalize to
new, previously unseen datasets at inference time. Classical strategies to prevent overfitting of
ML models include imposing inductive biases (Gatmiry et al., 2023; Helmbold and Long, 2015;
Morwani and Ramaswamy, 2022), bootstrap aggregation (Ngo et al., 2022; Debeire et al., 2024),
and data augmentation (Goceri, 2023; Shorten and Khoshgoftaar, 2019; Mumuni and Mumuni,
2022). These methods often enforce certain priors over the model weight space or leverage em-

pirical training heuristics to enable the development of more robust ML models. Recent work



on neural architecture search (NAS) has also helped discover novel model architectures that are
able to generalize better across different input distributions (Oymak et al., 2021; White et al., 2021;
Zoph and Le, 2017; Liu et al., 2025b). Interpretable-by-design ML models discussed above can be
thought of as a "human-in-the-loop” method of NAS to constrain model features as compositional,
modular, and/or semantically meaningful representations to improve their generalizability. Im-
portantly, while some have argued that such strategies are no longer of critical concern in the era
of large foundation models trained on Internet-scale data (Singhal et al., 2023; OpenAl et al., 2024;
Zhang et al., 2024), many domain-specific tasks bottlenecked by expert knowledge are still limited

in their ability to generalize to related task environments (Yao et al., 2025a; Trabucco et al., 2022).

However, a crucial limitation of these methods is that they assume total control over the design,
training, and deployment of the machine learning model. This is a strict assumption that does
not hold in many real-world applications: for example, leading domain-specific expert models are
often proprietary and made available only by limited application programming interface (API)
endpoints, and it may not be feasible to retrain computationally expensive models to optimally
perform on different input distributions. In these settings, we may only think of ML models as
black-box functions, where the only permissible interaction with f is querying it with inputs z to
observe outputs f(x). In this most general setting, the above methods to improve generalizability

are not applicable and it is not possible to ensure any generalizable correctness guarantees.

Instead, recent work has looked at the generalization behavior of black-box models subject to cer-
tain assumptions about the environment. For example, domain adaptation methods (Ganin et al.,
2016; Sun and Saenko, 2016; Bousmalis et al., 2016; Tzeng et al., 2017; Bousmalis et al., 2017) as-
sume that samples from the test distribution are accessible to align feature representations of da-
tums from the source and test distributions. Trabucco et al. (2021); Yu et al. (2021); and related
work assume a smoothness prior over the black-box function to implicitly enforce a constraint
on the Lipschitz norm of the function over the local domain of interest. In this dissertation, we
consider a separate environmental setup—mnamely, the experimental environment typical of offline

optimization problems described below—and investigate how to improve the generalizability of



black-box models as applied to this setting.

Offline Optimization. We have primarily limited our discussion of the interpretability and gen-
eralizability of ML models in isolation; how can we generally build machine learning models that
are interpretable and generalizable? However, the requirements for these attributes of ML systems
differ based on the underlying application. For example, models deployed in healthcare settings
almost always benefit from trading accuracy to increase their interpretability (Caruana et al., 2015;
Chae et al., 2024), and may therefore be hyper-specialized to a target patient population. In con-
trast, consumer recommendation systems may care less about the interpretability of model predic-

tions, but must critically generalize to a wide variety of user preferences.

The latter half of this dissertation proposes strategies to improve the generalizability of ML systems

in the context of offline optimization. Formally, we consider problems of the form

2 = argmax,cr f ()

where the goal is to find a design x that maximizes a black-box function f : & — R, with the
additional restriction that f(z) is not evaluable during optimization. To overcome this limitation, a
common approach is to instead learn a (parametrized) surrogate function approximation fy : X —
R trained to approximate f by fitting on a static offline dataset D = {(x;, f(x;))}I_, of previously

observed designs. We may then solve the related optimization problem

2" = arg max, v fo(a) (1.1)

with the hope that 2* ~ z*. Importantly, while a sufficiently well-trained surrogate may approx-
imate the true objective well, there is no guarantee of the correctness of fy on designs z € X' \ D
necessarily encountered during optimization. Put simply, naively constructed surrogate functions
used in offline optimization frequently lead to suboptimal proposed designs (Trabucco et al., 2021,
2022; Yu et al., 2021; Kumar and Levine, 2019; Fu and Levine, 2021) due to a failure to generalize

to newly proposed designs (Fig. 1.3).
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Figure 1.3: Poor model generalizability limits the utility of traditional optimization methods
in the offline setting. Consider a black-box machine learning model fy : X — R (i.e., a ‘fitted
surrogate model’) trained on a fixed dataset D,, = {(x;, y;)}/~; (shaded region) to approximate a
true function in nature f : X — R (i.e., an ‘oracle objective’). Evaluation of fs on inputs that are
grossly out-of-distribution compared to D,, (e.g., cross) can result in inaccurate model predictions
(e.g., diamond) compared to in-distribution inputs to fy (e.g., star). In Chapter 5, we address
black-box model generalizability in the context of offline optimization using adversarial feedback.

In this problem setting, we make a number of key observations. First, we note that solving the op-
timization problem in (1.1) does not require that fs well-approximates the true black-box function
f everywhere in the domain; rather, we only care that fy preserves the ranking of inputs = with re-
spect to f (Tan et al., 2025). Second, the space of possible ‘target’ distributions over X is large and
diverse, and importantly not known prior to optimization. This limits the utility of domain adapta-
tion techniques and similar methodology previously described above. Finally, we assume that the
labeled dataset D used to train fj is accessible. This assumption enables us to analyze the statisti-
cal properties of inputs with respect to D, and incorporate this information into the optimization

process itself. We discuss this further in the following Chapters 5-6.
1.1. Dissertation Statement

This dissertation is motivated by the belief that if we want to build and use machines that are trust-
worthy, we must critically re-examine the foundations of how we build and use them. I propose a
series of novel algorithms to help make ML systems more generalizable, interpretable, and robust.
These contributions are based in the belief that we must move beyond the notion that training a

single ML model from data alone is sufficient, and move instead toward approaches that incor-
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Figure 1.4: Improving the diversity of designs proposed in offline optimization. Traditional
model-based optimization (MBO) (Trabucco et al., 2021) techniques can generate high-scoring de-
signs, although often at the expense of the diversity of proposed designs. Ideally, the final set of
candidates should be of high quality while capturing multiple ‘modes of goodness.” For example,
although there are 3 unique global maxima (stars) in the 2D Branin (Branin, 1972) optimization
problem, traditional Bayesian optimization (BO-qUCB) proposes designs clustered around only a
single optima (diamonds). In contrast, we show in Chapter 6 how to modify the MBO objective to
discover diverse and high-quality designs (circles).

porate additional learning signals—including structured priors and adversarial supervision—that
mirror those available to us in human cognition. Such signals can offer a scaffold for more building

more trustworthy ML systems, improving their readiness for real-world critical applications.

In this work, I explore new directions for aligning machine learning with human-like learning. I
investigate both theoretical and practical strategies for incorporating structured knowledge into
learning algorithms, analyze the limitations of purely data-driven models, and propose methods
for bridging the gap between statistical learning and cognitive modeling. The overarching goal is
to move toward a framework of machine learning that is not only more powerful and reliable but

also more human-aligned in its assumptions, behaviors, and outcomes.
1.2. Dissertation Contributions

The contributions of this thesis are organized as follows:



In Chapter 2, I introduce the core background knowledge and preliminary concepts that lay the
foundation for the remainder of the dissertation. This chapter motivates the key problem formula-
tions that the work introduced discussed in this dissertation seeks to solve, and also the technical

methodology we use in the remainder of the text.

In Chapters 3-4, I discuss methods to build interpretable-by-design ML systems to improve their
ability to solve challenging tasks in clinical medicine. Chapter 3 outlines a zero-shot strategy
(Yao et al., 2025a) to prompt generalist large language models for guidance on ordering medical
imaging studies aligned with evidence-based guidelines (Fig. 1.2). We achieve this by enforcing
an intermediate representation space of patient input data that is explicitly constructed from med-
ical guidelines. Separately, Chapter 4 demonstrates how we can predict ‘synthetic lab values’ from
multimodal clinical data (Fig. 1.1) (Yao et al., 2023). We use our method for interpretable and

generalizable opportunistic screening of Type 2 Diabetes using real-world patient data.

In Chapters 5-6, I consider the problem of building generalizable ML systems in the setting of of-
fline model-based optimization, where we may not have the control to choose the underlying model
architecture. In this setting, Chapter 5 first introduces a principled method to leverage adversar-
ial feedback from source critic models to regularize how black-box models are used during offline
optimization (Fig. 1.3). This method enables us to better solve offline optimization tasks across a
wide variety of different scientific domains. In Chapter 6, we extend our method to consider the
secondary problem of diversity in offline optimization: in the setting where multiple final designs
can be proposed, it is often desirable to propose candidates that collectively cover a greater pro-
portion of the overall design space (Fig. 1.4). We show how adversarial feedback can be naturally
incorporated into a modified problem formulation that considers both the quality and diversity of

final design proposals in a range of scientific discovery tasks.

In Chapter 7, I conclude this dissertation by summarizing the major findings and discussing future
research directions to continue building more generalizable, safe, and robust machine learning

systems for challenging domain-specific tasks.



1.3. Relevant Publications

This thesis discusses the following first or co-first author publications.

1. (Yao et al., 2025a) Michael S Yao, Allison Chae, Piya Saraiya, Charles E Kahn, Jr, Walter R
Witschey, James C Gee, Hersh Sagreiyaf, Osbert Bastani’. Evaluating acute image order-
ing for real-world patient cases via language model alignment with radiological guidelines.

(Communications Medicine 2025)

2. (Chaeetal., 2024) Allison Chae*, Michael S Yao*, Hersh Sagreiya, Ari D Goldberg, Neil
Chatterjee, Matthew T MacLean, Jeffrey Duda, Ameena Elahi, Arijitt Borthakur, Marylyn D
Ritchie, Daniel Rader, Charles E Kahn, Jr, Walter WitscheyT, James C Gee'. Strategies for
implementing machine learning algorithms in the clinical practice of radiology. (Radiology

2024)

3. (Yao et al., 2023) Michael S Yao*, Allison Chae*, Matthew T MacLean, Anurag Verma, Jeffrey
Duda, James C Gee, Drew A Torigian, Daniel Rader, Charles E Kahn, Jr., Walter R WitscheyT,
Hersh Sagreiya'. SynthAlc: Towards clinically interpretable patient representations for dia-
betes risk stratification. (MICCAI PRIME Workshop 2023)

4. (Yaoetal, 2024) Michael S Yao, Yimeng Zeng, Hamsa Bastani, Jacob R Gardner, James C
Gee, Osbert Bastani. Generative adversarial model-based optimization via source critic reg-

ularization. (NeurIPS 2024)

5. (Yao et al., 2025b) Michael S Yao, James Gee, Osbert Bastani. Diversity by design: Leverag-

ing distribution matching for offline model-based optimization. (ICML 2025)

Here, * denotes the co-first authorship and ' denotes co-senior authorship. These publications are
licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). There-
fore, parts of this thesis are quoted directly from the above publications with the explicit approval
of all co-authors and my thesis committee. None of these aforementioned works have been or will

be extensively discussed in any of my collaborators” theses. Detailed statements describing my
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individual contributions to the above projects can be found at the beginning of each chapter.

In the following works, I made a secondary contribution as a co-author; the below publications are

therefore discussed only briefly in this dissertation in Appendix B.

1. (Wuetal, 2025) Yifan Wu, Wang Liu, Yue Yang, Michael S Yao, Wenli Yang, Xuehui Shi,
Lihong Yang, Dongjun Li, Yueming Liu, Shiyi Yin, Chunyan Lei, Meixia Zhang, James C Gee,
Xuan Yang, Wenbin Wei, Shi Gu. A concept-based interpretable model for the diagnosis of

choroid neoplasias using multimodal data. (Nature Communications 2025)

2. (Yang et al., 2024c) Yue Yang, Mona Gandhi, Yufei Wang, Yifan Wu, Michael S Yao, James C
Gee, Chris Callison-Burch, Mark Yatskar. A textbook remedy for domain shifts: Knowledge

priors for medical image analysis. (NeurIPS 2024)

Finally, the following first-author publications describe significant efforts during my dissertation

research that are outside the scope of the main body of this thesis:

1. (Yao et al., 2025c) Michael S Yao, Lawrence Huang*, Emily Leventhal*, Clara Sun, Steve ]
Stephen, Lathan Liou. Leveraging datathons to teach Al in undergraduate medical educa-

tion: Case study. (JMIR Medical Education 2025)

2. (Yao and Hansen, 2022) Michael S Yao, Michael S Hansen. A path towards clinical adapta-
tion of accelerated MRI. (Machine Learning for Health Symposium 2022)
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CHAPTER 2

BACKGROUND AND PRELIMINARIES

In this section, we first formalize a notion of out-of-distribution (OOD) evaluation of machine
learning systems, and establish that OOD evaluation is not merely a theoretical concern but a prov-
ably unavoidable component of many real-world, high-dimensional environments. As we demon-
strate, when data is sparse relative to the dimensionality of the configuration space—as is common
in many scientific and biomedical scenarios—standard generalization assumptions break down,
and trained models are almost surely used to extrapolate to regions not well represented in the
training set. This phenomenon is especially pronounced in cases where the data-generating dis-
tribution exhibits complex structure or where coverage guarantees (e.g., from Gaussian sampling
or low-entropy priors) do not sufficiently capture the range of possible inputs. Recognizing the
inevitability of such OOD generalization, we provide relevant background discussion to inform

our contributions in mitigating the impact of this problem.

First, let us consider a motivating example. Suppose that the function f(z) = max(0, ||z|| — 1) + ¢
describes the relationship between inputs z € R? and outputs f(r) € R, where ¢ is the aleatoric
uncertainty independent of z. We would like to train a predictive model f : RY — R from a hy-
pothesis class # that we believe contains the true underlying function f(x). The standard practice
in machine learning is to sample n i.i.d. observations D := {(z;, f(z;)}}_, from nature and then

learn the parameters of f to maximize the likelihood of observing D.

However, such approaches are rarely so straightforward in practice. For illustrative purposes, sup-
pose that the exact form of f(x) is not known a priori—a common limitation in real-world problems.
We might consider a hypothesis class H = {x —w'z+b:weRY be ]R} of linear models as a

naive ansatz. Furthermore, we may only be able to sample our training dataset from the unit hy-

d

persphere volume S&. = {z € R? | ||z||2 < 1}, even though we would like our trained model

to predict on arbitrary inputs from R4, Ttis easy to see that empirical risk minimization yields the

d

solution f(z) = 0 from #, which fits the true function f(z) perfectly on S¢ . . However, suppose
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that we now sample a test datum X ~ N(0, I). Observe first that || X||3 follows a x2-distribution,
whose well-known cumulative distribution function gives Pr(||X|]2 > 1) = Pr(||X|3 > 1) =
I'(d/2,1/2)/T'(d/2). In the limit that d > 1, we have I'(d/2,1/2) ~ I'(d/2,0) = I'(d/2) and so the
norm of || X || almost surely is greater than 1 with large d, meaning X ¢ S? with high probability.
Secondly, note that if || X|| > 1, then the prediction error | f(X) — f(X)| = | max(0, || X|]s—1)—0| =
|| X||2 — 1, which we show scales with O(+/d) in Theorem 3 below. In other words, the predictive

error scales with v/d with high probability in high-dimensional input spaces!

While this toy thought experiment is somewhat contrived, it crucially illustrates a number of key

features of real machine learning systems:

1. Epistemic Uncertainty. Broadly speaking, epistemic uncertainty arises from a lack of knowl-
edge or information about a task-specific domain. In the above example, this form of uncer-
tainty is manifested by our ‘incorrect’ choice of the hypothesis class H, which did not contain
the true underlying function f(z). While this may be evident in hindsight, choosing a hy-
pothesis class that is large enough to contain f(z) but small enough to avoid overfitting a

finite training dataset is often difficult in practice.!

2. Covariate Shift. Covariate shift refers to the difference between the distribution of covari-
ates p(z) in the training dataset of f(x) and in the dataset of covariates we are interested in
using the learned model on at test time. In the above example, we were only able to con-

struct our training dataset by sampling from Sgam,

but wanted to use our predictive model
on inputs sampled from N(0, I;) with non-zero support over all of R?. In practical applica-
tions, we might only have access to training data from one patient population, but want to

still generalize learned insights to a new set of patients, for example.2

3. Error Scaling in d. Together, epistemic uncertainty and covariate shift lead to poor prediction

error scaling with the dimensionality of the input space. We observed that the predictive er-

"This thesis does not significantly discuss aleatoric uncertainty, which instead stems from (usually random) measure-
ment noise of the input covariates and/or output observations.

>The work presented in this thesis primarily focuses on addressing covariate shift, and only briefly mentions tech-
niques to address other types of distribution shift, such as label shift and concept shift (Yao et al., 2022).
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ror of machine learning models is significantly worse in the high-dimensional setting of our
toy example above. For many real-world problems with high-dimensional intrinsic dimen-
sions and even higher input dimensions, error scaling can thus lead to catastrophic failures

in machine learning systems.

The overarching goal of this thesis is to propose methods to address (1) Epistemic Uncertainty

and (2) Covariate Shift to reduce the (3) Error Scaling in d in real-world machine learning sys-

tems. More specifically, we introduce generalizable algorithms to address these problems as they
pertain to scientific discovery and clinical medicine, where these issues can lead to deleterious

consequences if not properly addressed.

Is the problem of covariate shift unavoidable in high-dimensional problems? One might argue that
obtaining more training data with better coverage of the input space and designing more intelligent

model architectures mitigate this issue. However, consider the following theorem:

Theorem 1 (Necessary Extrapolation in Higher Dimensions). Suppose that we have a dataset of size
n of d-dimensional points {X;}I' | sampled i.i.d. according to X; ~ N (0, I;), and let X ~ N (0, 1) be an
independent test point. Then for any finite ¢ > 0,

lim Pr(3i:||X — X;|], <¢) =0 (2.1)

d—~+00

Proof. The standard union bound gives

n
Pr(Ji: ||X — Xi|l, <) <> Pr(||X - Xillz <) =n-Pr(||X - X'|| < ¢)
i=1
for any X’ € {X;}" ,. Itis easy to see that X — X' ~ N(0,2I;). Park (1961) has shown that
the random variable || X — X'||5 is distributed according to the x-distribution with the probability

density function
(Z/ﬂ)d—1e—(z/\/§)2/2 Zd—le—22/4

2d2-17(d/2)  24-1T(d/2)

flz) =
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Therefore,

n c 1 2
n.Pr(HX_X/HZSE):W(d/?)/O dz 247 te™*"/4

This integral is well-known and can be written in terms of the incomplete I" function:

A e e (R

'(d/2) '(d/2)

n&?d

T 427 10(dj2) Oe™)

in the limit of small ¢ /d < 1. The denominator asymptotically scales like O(d!) while the numerator
is only exponential in d, meaning that the right hand side quickly converges to 0 for any finite choice

of n, € using Stirling’s formula. We therefore have

d
lim Pr(3i: [|X — X,||, <e) < li PrX - Xy <e&)= lm [—01C
d—1>I-‘yI-1c>o I‘( ’ || H2 - 8) B d—lgl—noon I‘(H H2 B 5) d—1>I-‘yI-100 <d 2d1F(d/2)> (2 2)

=0

The claim follows. O

Remark 1 (Generalization of Theorem 1 to Out-of-Distribution Scenarios). Consider the same setup

as in Theorem 1 except that the point X is now drawn from an arbitrary distribution with Lebesgue density

[x (x) satisfying sup,c ycpa fx (x) < M finite.? Then
lim Pr(3i:||X — X;|]a < &) =0
d——+o00

for any choice of finite €.

The assumption that fx has a bounded Lebesgue density is relatively weak—it is well-known that most probability
distributions in the real world satisfy this property.
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Proof. Using the same standard union bound as in our approach above,

Pr(3i : ||X - Xil|s < ) <ZPI‘(||X—X¢H2<6):Z/ o, L xt)
i=1 j Il 238

< / de M =M /
; [|lz—X;||2<e Z
de/Qna

I'(1+d/2)

[|le—X; H2<5

= Mn - Vol(By(e)) =

where Vol(By(¢)) is the volume of a d-dimensional sphere with radius €. As in our proof for The-

orem 1, the denominator scales like O(d!) while the numerator is only exponential in d, meaning

Mnr?/2ped
lim P X —Xjllp<e)< lim o1 2.
L P3| lzse)s m sagm =0 (2:3)

for any e > 0 finite. O

Theorem 1 and Remark 1 argue that extrapolation is not only common, but unavoidable in high-
dimensional spaces. Furthermore, the dominant terms in both (2.2) and (2.3) are factorial in d
(with only linear dependence on the dataset size n), meaning the lower bound on the respective
probabilities of extrapolation rapidly approaches 1. This result builds on the well-known result

from Barany and Fiiredi (1988), which we include below for completeness.

Theorem 2 (Vanishing Convex Hull of Finite Datasets (Bardny and Fiiredi, 1988)). Suppose that we
have a dataset of size n of d-dimensional points {X;}?_, sampled i.i.d. according to X; ~ N (0,1;), and let

X ~ N(0, 1) be an independent test point. Define HurL(-) to be the convex hull of its arquments. Then

lim Pr(X € Hurr(Xy, Xa,...X,)) =0 (2.4)

d—+o0
Proof. Define the random variable u := X/||X||. By construction, observe that

T _XTX —
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Because the linear functional of a Gaussian is also Gaussian and since u has unit norm, note that

u?' X; ~ N(0,1) for any dataset member X; ~ N(0, I;). Define M := maxi<;<, u! X;. We have

Pdﬂlgs):Pr<ﬁ]WTX%§50::Uﬁuﬁxéggﬂn:[;(1+eﬁ(;%)>]n

i=1

Choosing ¢ = ¢4 := d'/*, note that

dggg%mfgedzdggoﬁ<ﬁ+eﬁ<j%)ﬂn:[;u+1ﬂn:1 (2.5)

since lim,_, - erf(z) = 1. Separately, a corollary of our proof to Theorem 1 is that for any random

variable X ~ N(0, I,),

d d4/4

. 1 €4 1T
Jm PrXl > ea) = 1= lim ooimm ey = 1~ M g
Using Stirling’s formula in the limit of large d > 1,
dd/4
lim Pr(||X]|| > =1— 1
dﬁl\rjloo r((1X11 > ea) dﬁnfoo d-29=1 .21 - (d/2)(d/2)~(1/2) exp(—d/2)(1 + O(1))
—1— lim 1 (2.6)
d—+oo d - (1/2)33 . /21 - d@/D~(1/2) exp(—d/2)(1 4+ O(1))

=1-0=1
since e = 0(d?) in the above limit. From independence,
i < = i . <egy) = )
Jim_Pr ((HXH >eq) [ (M < gd)) Jim Pr([X||> ) Pr(M <e) =1 (27)

combining (2.5) and (2.6). By definition of the convex hull, we know z € HuLL(X1, Xo, ... X)) iff

z =Y a;X; for some (a1, a,...,a,) € A(n) probability simplex. Observe that

1<j<n

ul'z = ZaiuTXi < Zai( max uTXj) = MZ%‘ =M (2.8)
i=1 i=1 i=1

for any member z of the convex hull. In particular, note that if ulz < M < g4 < ||X||, then X
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cannot be contained in the convex hull since it does not satisfy (2.8). Therefore,

lim Pr(X € Hute(Xy, Xa, ..., X)) <1— lim Pr ((HXH >eq) () (M < ed)) —1-1=0
d—+00

d——+00

using (2.8). O]

A notable corollary to Theorem 2 is presented by Balestriero et al. (2021): the size of training
dataset n must increase exponentially with the intrinsic dimension of the data manifold to avoid
the vanishing hull problem presented in this theorem. While this may be feasible in training mod-
ern generalist ML systems on Internet-scale data, the vast majority of problems in science and
medicine are inherently limited by the availability of high-quality data. Finally, we extend beyond
the notion of e-neighborhoods from Theorem 1 to consider how nearest neighbor distances scale

in high dimensions:

Theorem 3 (Scaling Law of Nearest Neighbor Distances). Suppose we have a dataset of size n of d-
dimensional points {X;}I" | sampled i.i.d according to X; ~ N(0,1y), and let X ~ N (0, I4) be an inde-
pendent test point. Define Wiy = infic1 o ny [|X — Xi||. Then Wiy scales with O(Vd).

Proof. Recall from Park (1961) that the random variable ||X — X;||, is distributed according to the

x-distribution. From Laurent and Massart (2000),
1
Pr <‘21X - Xil|3 - d‘ < 2Ved + 2g> = Pr (H\X — Xi||5 —2d| < 4Ved + 4g> >1—2e°¢

2
for any 4. Since || X — Xi||2, v2d > 0, we know ‘HX ~ Xyl]s — \/Qd‘ <[I1x = X33 - 2d

, meaning
2
pr (16 - il VB[ < 4RI+ 4c) 21— 20
In the limit ¢/d < 1, we know 4Ved + 4 — 4V/ed, meaning

2
lim Pr<‘||X—Xi|yg—\/ﬁ‘ §4\/£> >1—2°¢

d—+00
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so long as € = o(v/d). Equivalently,

2 2
lim Pr<az‘:’y\X—Xi\|2—\/ﬁ) >4x/?d> <n- lim Pr(’HX—Xlug—\/ﬁ‘ >4\/£)

d——+00 d—+o0

< 2ne ¢

using the standard union bound. We can choose ¢ = § logd = o(v/d), giving

1 1/4 2n
lim P 3‘;( X — X, —\/2‘ 9 (241 < lim 22
dtoo r( i ]l 2 d > <2d Ogd> ) —dirfmﬁ

As we take d — +o00, the right hand side of the inequality approaches zero. Defining Win :=

minlgign HX — XZ'HQ, we have

lim Pr (’Wmm — \/ﬁ‘ < 2/4(dlog d)!/* < 23/4\@)

d—+o0
1 1/4
—1— lim Pr (3¢ : ‘HX — Xyl — \/2d‘ > 2 <dlogd> )
d—+o0 2
2n
>1- lim 2 -1
- d%lrlloo \/a

And 50 [Wiin — V2d| = 0(+/d) in probability. The claim follows.

The aforementioned results establish that in high-dimensional settings—particularly those of prac-

tical interest—out-of-distribution (OOD) evaluation of learned algorithms is not only common, but

inevitable. This thesis investigates two complementary strategies to address this challenge. Firstly

in Section 2.1, we show how to reduce the effective dimensionality of a problem to circumvent the

limitations imposed by bounds that become critical in the asymptotic regime where d > 1. In Sec-

tion 2.2, we next develop a principled measure of ‘out-of-distribution-ness” based on adversarial

supervision, penalizing model predictions that exceed a tolerated error bound.

2.1. Interpretability as a Means to Generalizability

In this dissertation, we define a model as interpretable-by-design when its internal representa-

tions of the input space correspond to ‘concepts’ that can be understood by humans. For example,
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an interpretable-by-design regressor f : R? — R might have the form

x> () = [p1(x), P2(x), - ., or(2)] = f(@(2)) (29)

where f is the regressor that acts over the k-dimensional feature space ¢(x) instead, and where
each ¢; corresponds to a semantically meaningful concept. In practice, we often choose to restrict
our hypothesis class such that f is an easily inspected mapping—this allows human practitioners to
audit and verify the learned relationships between features ¢;(x) and the dependent variable. Our
core assumption is that interpretable-by-design models are aligned with human cognitive induc-
tive biases—for example, categories and causal relations—that humans naturally use to generalize

internal representations under covariate shift.

A common assumption made in the field of mechanistic interpretability is that the individual fea-
tures ¢; are monosemantic and semantically disentangled, meaning that each learned feature
corresponds to exactly one distinct semantic concept. Under this assumption, one can show that
the learned features are better separated in the model latent representation space, yielding greater
robustness and out-of-distribution performance Zhang et al. (2025a). For example, a well-known
result from Bartlett and Mendelson (2003) places a bound on the empirical test error as a function

of the decision boundary margin:

Theorem 4 (Misclassification Risk Bound (Theorem 21 from Bartlett and Mendelson (2003))).
Suppose that the minimum decision margin bound is given by ~, and define Ry, to be the empirical training

classification error over a set of n points, and Ry to be the true test error. Then for every linear classifier

R log(1/6
Rtest S Rtmin + (@) ( g(2/)>
ny

with probability 1 — 4.

We cite this result primarily for discussion—the proof of this result is provided by the original

authors in Bartlett and Mendelson (2003). Informally, greater separability of classes in the feature
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space (i.e., larger ) can allow us to place a tighter bound on the true test error. While Theorem 4
assumes a family of linear classifiers, prior works have extended similar results to model deep
networks and regression models (Zhang et al., 2025a; Scherlis et al., 2022; Alain and Bengio, 2017;

Lyu et al., 2022). Building off these prior work, we hypothesize that

Interpretable-by-design ML systems enable human-like compositionality in

predictions, enabling better out-of-distribution generalization.

In Chapters 3-4, we show that interpretability allows us to construct ML systems with principled

inductive biases aligned with clinician reasoning to improve their generalizability.
2.2. Adversarial Supervision of Black-Box Models

A key limitation in building interpretable models as described in the previous section is that it
assumes we as machine learning practitioners have the agency to design and train deployed pre-
dictive models from scratch. However, in many real-world applications this is not a feasible as-
sumption—many ML systems interact with sensitive data, are available only via remote procedure
calls, or implemented in workflows where interpretability is unfeasible. In the most general set-
ting, we can only think of ML models as static black-box systems where we only have access to a
single prediction y given an input z. Under this framework, it is challenging (and in many cases

impossible) to ensure robust generalizability of an ML model without any additional assumptions.

In this thesis, we therefore specialize to the setting where there is pre-existing data to learn from.
This is often true in many real-world settings; for example, we might have observational data of
patient outcomes from one hospital site, or a database of molecular sequences and their corre-
sponding properties reported in prior scientific literature. In these cases, we will show how it is

possible to leverage these static (and often imperfect) datasets as a form of additional supervision.

An important observation is that by having access to such a dataset D, we can bound the empirical
test error as a function of the error on the available dataset and the 1-Wasserstein distance between

D and the test samples. Firstly, recall that the p-Wasserstein distance is defined as follows:
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Definition 1 (p-Wasserstein Distance). Define (X, d) to be a metric space and fix p € [1,00). For any

two probability measures p, v over X with finite p-th moment, define the set of all couplings of i, v as
D(p,v) ={meP(X xX) : T(Ax X)=u(A), 7(X x B) =v(B)}

where A, B are any Borel subsets of X. Then the p-Wasserstein distance is defined by

1/p

Wy(p,v) = inf / dr(z,x')d(z, 2" )P
mel(pv) Jxxx

For the remainder of this dissertation, we specialize to the p = 1 Wasserstein distance in a Euclidean

metric space:

Wi(uv) = inf / dn(z, ') ||z — 2'||2
mel(u,v) Jxxx

Given this definition, we obtain the following bound on the empirical test error:

Theorem 5 (Bound on Empirical Test Risk). Define a real-valued, Borel-measurable function f : X — R
defined over a domain X C R?, and define K := ||f(z)||1, to be the corresponding Lipschitz constant of f.
Given a finite dataset of n observations D := {(z;, f(x;))}_,, suppose we train a predictive model f on
D with Lipschitz constant K ; finite such that the empirical training risk € := E, ) ply — f(x)| is finite.

Then, the test risk on a new sample of T test inputs T = {z; };‘le is bounded from above by

Epnrlf(2) = f(2)] < & + (K + K )W (up, o) (2.10)
where W1 (up, ) is the 1-Wasserstein distance associated with || - ||2.

Proof. Define v € I'(jup, p7) as the optimal coupling between input observations 2’ and z in D and
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T, respectively. For pairs (2, x) ~ , note that

B £ (@) = F@)] = B aysl f(2) = F(2)] iy s the z-marginal of y
=B ays | (1) = F@)) = (1) = fa)) + (£@) = F(@))]
< B ayen | (F@) = f@)) = (1) = fa)) Triangle inequality
+ Egw s /@) = F(@)
= B o |(£2) = f@)) = () = Fa))

p is the 2’-marginal of
H g Y

=B z)nry ‘(f(x) — f(x)) - (f(ac’) — f(x')) ‘ +e Definition of ¢
= (K + K{)E@ o)z — 2'|]a+ ¢ Definition of Lipschitz constants
=(K+K f)Wl (up, 1) + € Definition of 1-Wasserstein bound
The claim follows. O

We remark that deriving the global Lipschitz bounds K, K ; is N"P-hard and infeasible in practice
(Scaman and Virmaux, 2018; Hu et al., 2024). However, Theorem 5 still holds if K, K i only hold
locally over a finite subset of X’ that contains D |J 7, which is much easier to derive. Furthermore,
note that the constants € and Lipschitz constants K, K jin (2.10) are irreducible, since we assume
that we do not have control over D or the functions f, f. However, (2.10) also shows that bound-
ing Wi (up, pr) will yield a corresponding finite bound on the empirical test risk. This is a key
observation—by intelligently choosing the test points in 7 that we use to evaluate with f, we can

guarantee a bound on the mean test error over 7.

In practice however, computing Wi (up, 1) for real-world instances of D, T is nontrivial. The
challenge is in how the set of couplings I scales with the number of observations n in the dataset;
classical algorithms that naively compute W; have a time complexity of O(n?) (Pele and Werman,

2009). To overcome this limitation, we look to prior work (Arjovsky et al., 2017):
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Lemma 1 (Kantorovich-Rubinstein Duality (Kantorovich and Rubinstein, 1958)). Recall that the 1-

Wasserstein distance between probability measures p, v over X is given by

Wi(uv)= inf / dn(z, ') ||z — 2'||2
m€l(u,v) Jxxx

Then W1 (u, v) can be equivalently written as

Wi(p,v) = % ||cﬁlLlI§)K {Bpmple(@)] = Epayc(a’)]}

where || - || is the Lipschitz norm.

The proof of this result is given in Kantorovich and Rubinstein (1958). Informally, the function
c : X — Ris a source critic function that learns to discriminate points sampled from  and v.
If c(x) is large (resp., small), then the point z is likely to have been sampled from p (resp., v).
Arjovsky et al. (2017); Yao et al. (2024) demonstrate how to implement source critic functions as
machine learning models—by training a neural network as an adversarial model that learns to
discriminate between two distributions, we can compute (and therefore bound) the 1-Wasserstein
distance between the aforementioned probability measures. In the Wasserstein GAN (WGAN)
model proposed by Arjovsky et al. (2017), a generative network and source critic are co-trained
in a minimax game where the generator (critic) seeks to minimize (maximize) the Wasserstein
distance W between the training and generated distributions. In this way, the generator can learn
the distribution of training samples from nature—in our work, we extend this framework to the

problem of generative optimization under distribution shift. Put simply, we hypothesize that

Adversarial source critic models can help us implement meaningful and computationally

tractable bounds on the 1-Wasserstein distance, and therefore the empirical test risk.

In Chapters 5-6, we will show how such an approach can be used in generative optimization

problems, where we have explicit control over the test set 7.
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2.3. Constrained Optimization via Lagrangian Duality

In the latter half of this dissertation, we consider constrained optimization problems of the form

minimize,cx f(x)
(2.11)
subjectto  fi(x) <0 Vie{l,...,m}

given a set of m constraints. In general, satisfying any arbitrary set of (potentially nonlinear) con-
straints is challenging if not intractable, and it is often desirable instead to solve a related uncon-
strained optimization problem. One common mechanism to perform such a problem transforma-
tion is to define the Lagrangian of (2.11) as L(z; X) = f(z)+ <X, [f1(x) folz) -~ fm(x)] > where
Xe R7and £ : X xR — R. It can be shown (Boyd and Vandenberghe, 2004) that the constrained

optimization problem in (2.11) is equivalent to the unconstrained problem

-

minimize;cxy maximizes pn L£(7;A) (2.12)
+

in terms of the Lagrangian. The dual problem of (2.12) is constructed by reversing the order of the

minimization and maximization problems:

maximizexeRT minimize ey L£(x;X) = maximizeXGRTg(X) (2.13)

where we implicitly define the dual function g(X) := mingey £(z; X). In general, it is guaranteed
that the optimal solution to the dual problem in (2.13) is a lower bound on the optimal solution
of the original problem in (2.11) from weak duality; if f(x) and f;(x) are convex and bounded
from below such that Slater’s condition applies, then strong duality guarantees that the optimal
solutions to the dual and original problems are equal. Solving the dual optimization problem in
(2.13) requires us to first solve for the dual function g(X), whichis a challenging (often intractable)
task in the most general case. In Yao et al. (2024), we approximate g(X) under specific assumptions
on the search space X'. In Yao et al. (2025b), we show how our problem formulation admits an exact

solution for the dual function g(X) (see Lemma 6).
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CHAPTER 3

CLINICAL DECISION SUPPORT VIA GENERALIST LANGUAGE MODELS

Portions of this chapter are adapted from the following published first-author manuscript:

(Yao et al., 2025a) Michael S Yao, Allison Chae, Piya Saraiya, Charles E Kahn Jr., Walter R Witschey,
James C Gee, Hersh Sagreiya', and Osbert Bastani'. Evaluating acute image ordering for real-world
patient cases via language model alignment with radiological guidelines. Commun Med, 5(332),

2025. doi: 10.1038/s43856-025-01061-9

Here, T denotes co-senior authorship. I helped conceive the study, planned and performed experi-

ments, analyzed experimental data, and drafted the manuscript with input from all other authors.
3.1. Introduction

In this chapter, we demonstrate a method to build an interpretable computational clinical assis-
tant that requires no additional model training of generalist large language models (LLMs). By
constructing an interpretable-by-design predictive pipeline, we adapt consumer-grade LLMs for a

challenging, real-world clinical task.

Ordering diagnostic imaging studies is an increasingly common task in the emergency depart-
ment (ED) and other acute-care settings, and is associated with high cognitive burden for clin-
icians (Baloescu, 2018; Kwee et al., 2024; Litkowski et al., 2016; Salerno et al., 2019). While diag-
nostic imaging can play a crucial role in the acute workup of patients, ordering imaging studies
with limited clinical utility are associated with increasing concerns regarding resource utilization,
radiation exposure, and financial burden to both patients and healthcare systems (Francisco et al.,
2024; Sadigh et al., 2022; Tung et al., 2017). Recent estimates suggest that up to 30% of diagnostic
imaging studies ordered in the ED setting could be replaced with more appropriate alternatives at

the time the order was placed (Francisco et al., 2024; Venkatesh et al., 2012).

Multiple factors contribute to the challenge of ordering appropriate and clinically indicated imag-
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ing studies. Emergency medicine physicians often need to make rapid diagnostic decisions with
limited clinical context while simultaneously managing high patient volumes and complex pa-
tient presentations (Lee et al., 2013; Pinto et al., 2016). Furthermore, there is significant variabil-
ity between healthcare providers in imaging ordering patterns: recent studies have documented
significant inter-physician differences in the utilization rates of different imaging studies, suggest-
ing that factors beyond pure clinical necessity influence imaging decisions (Jameson et al., 2024;

Valtchinov et al., 2019; Wintermark et al., 2016; Quinn et al., 2023; Young et al., 2020).

To help clinicians make more informed, evidence-based decisions in image ordering and simulta-
neously address inter-provider variability in imaging practices, the American College of Radiology
(ACR) released the ACR Appropriateness Criteria® (ACR AC), which are a set of evidence-based
guidelines that assist referring physicians in ordering the most appropriate diagnostic imaging
studies for specific clinical conditions (of Radiology, 2024). As of June 2024, the ACR AC contains

224 unique imaging topics (i.e., patient scenarios).

However, despite the widespread availability of the ACR AC, low utilization of these guidelines
remains a challenge in many emergency departments and inpatient settings (Bresnahan, 2010;
Salerno et al., 2019). Bautista et al. showed that there is low utilization of the ACR AC by clin-
icians in practice: less than 1% of physicians interviewed in their study use the ACR AC as a
first-line resource when ordering diagnostic imaging studies (Bautista et al., 2009; Taragin et al.,
2003). The limited usage of the ACR AC may be partly due to how the Appropriateness Criteria
are made accessible to clinicians; the evidence-based criteria are dense and can be difficult to parse
through even for physician experts—especially in acute healthcare settings such as the emergency

department where decision making is both time-sensitive and critical.

To address this problem, recent work has investigated the potential utility of generative artificial
intelligence (AI) tools to synthesize dense passages of evidence-based guidelines to offer clini-
cal decision support (CDS) in physician workflows (Barabucci et al., 2024; Goh et al., 2025, 2024;
Labkoff et al., 2024; Nazario-Johnson et al., 2023; Zaki et al., 2024). In particular, large language

models (LLMs) are generative Al models trained on large corpora of textual data to achieve im-
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pressive performance on tasks such as language translation, summarization, and text generation
(Chambon et al., 2023; Clusmann et al., 2023; Tay et al., 2024; Yan et al., 2022). However, LLMs
can nonetheless struggle in challenging domain-specific tasks requiring human expertise and spe-
cialized training, such as in medicine, law, and engineering (Evans and Snead, 2024; Hager et al.,
2024; Kawamura et al., 2022; Ong et al., 2024; Omiye et al., 2023; Malaviya et al., 2025). As a result,
accessing the potential benefits of LLMs in these domains—such as for recommending appropriate
imaging studies for patients—continues to be an ongoing challenge, deterring widespread adap-

tation of generative AI models in clinical medicine (Allen et al., 2021; Spotnitz et al., 2024).

Prior work has examined the ability of LLMs to rapidly process and contextualize large volumes
of information could help transform the ACR Appropriateness Criteria into a more accessible,
real-time clinical decision support tool. For example, Nazario-Johnson et al. (2023) and Zaki et al.
(2024) evaluate the alignment of LLMs with the ACR Appropriateness Criteria; however, both
studies leverage inputs that are not representative of the vernacular used in real-world clinical
workflows. Other studies (Savage et al., 2024; Kim et al., 2024; Krithara et al., 2023; Jin et al., 2021;
Rau et al., 2023) work with more realistic examples of real-world patient descriptions; however,
these LLM inputs either (1) assume that all relevant medical information is provided to make a
diagnostic decision; or (2) are phrased as multiple choice questions. Neither of these characteris-
tics are representative of how clinicians might use LLMs for clinical decision support in practice,
especially in acute emergency medicine settings that are notably characterized by the lack of a com-
plete patient information. Finally, Liu et al. (2025a); Zhang et al. (2024, 2025b,c); and Singhal et al.
(2023) introduce a number of performant models for medical tasks; however, these models again
assume access to a relatively complete picture of the patient’s clinical status and past medical his-

tory, which is rarely the case for acutely presenting patients in the emergency room.

In this work, we investigate how state-of-the-art LLMs can be used as CDS tools to help clinicians
order guideline-recommended imaging studies according to the ACR AC. In Figure 3.1, we first
motivate this problem by demonstrating how a state-of-the-art language model, such as Claude

Sonnet-3.5, fails to accurately recommend diagnostic imaging studies that align with the ACR AC
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for a variety of input patient descriptions. Given these initial findings, we hypothesize that while
LLMs may struggle to directly recommend imaging studies for patients (a domain-specific task),
they may be able to accurately describe patient conditions and presentations (phrased as ACR AC
Topics) (Singhal et al., 2023; Williams et al., 2024). In this light, we apply LLMs to analyze pa-
tient case summaries and map them to topic categories from the ACR AC (Fig. 1.2). These ACR
AC topics are our interpretable representations of the input patient case summaries as in (2.9).
We represent these case summaries as “patient one-liners,” which are concise summaries of pa-
tient presentations commonly used by clinicians to communicate relevant details quickly to other
healthcare providers (Arman, 2023; Zussman et al., 2024). Importantly, our dataset of patient one-
liners is representative of both the vernacular and limited patient context available in real-world
text written by clinicians. Given a patient one-liner, we can then programmatically query the ACR
AC based on the LLM-recommended topic category (without any explicit LLM usage) to deter-
mine the optimal imaging study for a patient. In this fashion, LLMs can be used to recommend

diagnostic imaging studies according to recommendations from the guidelines.

We first introduce RadCases, a publicly available dataset of one-liners labeled by the most rele-
vant ACR AC Panel and Topic. Second, we evaluate publicly available LLMs on our RadCases
dataset to characterize how existing tools may be used out-of-the-box for diagnostic imaging sup-
port in inpatient settings, and show that generalist models such as Claude Sonnet-3.5 and Meta
Llama 3 can accurately predict ACR AC Topic labels given patient one-liners. We then assess how
popular techniques such as model fine-tuning (MFT), retrieval-augmented generation (RAG), in-
context learning (ICL), and chain-of-thought prompting (COT) may be effectively leveraged to
improve the alignment of existing LLMs with ACR AC, and also enable LLMs to outperform clin-
icians in the accuracy of ordered imaging studies in a retrospective study (Kresevic et al., 2024;
Sivarajkumar et al., 2024). Finally, we conduct a prospective clinical study to show that LLM clini-

cal assistants can improve clinician image ordering accuracy in simulated acute care environments.
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3.2. Materials and Methods
3.2.1. RadCases Dataset Construction

Prior work in medical natural language processing has primarily focused on tasks such as docu-
mentation writing, medical question answering, and chatbot-clinician alignment. In each of these
tasks, a relatively complete picture including hospital course, lab values, and advanced image stud-
ies of a patient presentation is often available. This is not representative of the limited patient
history to guide acute image ordering in the emergency room. To best simulate decision-making
contexts with limited patient information available, we first needed to curate a dataset of patient

scenario descriptions—or “one-liners”—and corresponding ground-truth labels.

To build the RadCases Dataset, we leveraged five publicly available, retrospective sources of tex-
tual data. Firstly, we prompted the GPT-3.5 (gpt-3.5-turbo-0125) LLM from OpenAl to generate
16 Synthetic patient cases with a chief complaint related to each of the 11 particular ACR AC Pan-
els related to diagnostic radiology. We also introduced the Medbullets patient cases consisting
of challenging United States Medical Licensing Examination (USMLE) Step 2- and 3- style cases
introduced by Chen et al. (2025a). The original Medbullets dataset consisted of paragraph-form
patient cases accompanied by a multiple-choice question; to convert each question to a patient

one-liner, we used the first sentence of each patient case.

Similarly, we leveraged the JAMA Clinical Challenge and NEJM Case Record datasets that in-
clude challenging, real-world cases published in the Journal of the American Medical Association
(JAMA) and the New England Journal of Medicine (NEJM), respectively. These patient cases
are often complex enough to be published as resources for the broader medical community. The
JAMA Clinical Challenge (resp., NEJM Case Record ) dataset was initially introduced by Chen et al.
(2025a) (resp., Savage et al. (2024)); we follow the same protocol as for the Medbullets dataset de-

scribed above to convert these document-form patient cases into patient one-liners.

Finally, we sought to evaluate LLMs on patient summaries written by clinicians in a real-world

emergency department. We constructed the BIDMC dataset from anonymized, de-identified pa-
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Figure 3.1: LLMs struggle with diagnostic imaging ordering. We evaluate Claude Sonnet-3.5, a
state-of-the-art language model, on its ability to order imaging studies given an input patient case
description, or “one-liner.” The LLM is evaluated on five representative subsets of the RadCases
dataset introduced in our work. To demonstrate the difficulty of ordering diagnostic imaging stud-
ies in practice, we show that (a) Claude Sonnet-3.5 frequently orders imaging studies that are not
aligned with the ACR Appropriateness Criteria. (b) The language model also frequently orders
unnecessary imaging studies, and (c) can incorrectly forego imaging even when it is clinically
warranted. In our work, we introduce an LLM inference strategy to significantly improve the per-
formance of language models according to these important clinical metrics. Error bars represent
+95% Cl over n = 5 independent experimental runs.

tient admission notes introduced by Johnson et al. (2023) in the MIMIC-IV dataset by taking the
first sentence of each clinical note as the patient one-liner. Briefly, the original MIMIC-IV dataset
includes electronic health record data of patients from the Beth Israel Deaconess Medical Center
(BIDMC) admitted to either the emergency department or an intensive care unit (ICU) between
2008 and 2019 (Johnson et al., 2023). We restrict our constructed one-liner dataset to those from

the discharge summaries of a subset of 100 representative patients.

A patient one-liner was excluded if any of the following exclusionary criteria applied: (1) the ACR
AC did not provide any guidance for the chief complaint (e.g., a primary dermatologic condition);

(2) an appropriate imaging study was performed and/or a diagnosis was already made; (3) the
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one-liner did not include sufficient information about the patient; or (4) the one-liner did not re-
fer to a specific patient presentation (e.g., one-liners extracted from epidemiology-related USMLE
practice questions). Of the original 2,513 patient cases, a total of 914 (36.3%) cases were excluded
due to the above criteria (719 excluded cases due to criteria (1); 90 due to criteria (2); 49 due to
criteria (3); and 56 due to criteria (4)). All 1,599 remaining one-liners in our final dataset were in-
dividually reviewed to be representative of true clinical one-liners in practice by one U.S. attending

radiologist and two U.S. medical students.
3.2.2. Model Evaluation

Our curated RadCases dataset consists of 1,599 patient one-liner scenarios constructed from five
different sources representing a diverse panel of patient presentations and clinical scenarios: (1)
RadCases-Synthetic (156 out of the 1,599 total patient cases); (2) RadCases-USMLE (170 patient
cases); (3) RadCases-JAMA (965 patient cases); (4) RadCases-NEJM (163 patient cases); and (5)
RadCases-BIDMC (145 patient cases).

Our next task was to annotate ground-truth labels to each of the patient scenarios in the RadCases
dataset. An intuitive ground-truth label might be to assign a single “best” imaging study (or lack
thereof) to order for each patient scenario. However, such a singular ground-truth label is of-
ten non-existent: imaging studies can vary largely by clinician preference—even amongst expert
physicians (Derbas et al., 2021; Guenette et al., 2024; Hughes et al., 2015)—and available hospital
resources. Furthermore, the ultimate goal of the RadCases dataset is to align LLMs with evidence-
based guidelines for image ordering; labels of imaging studies alone arguably contain weak, im-
plicit signals on the underlying guidelines that dictate the “best” imaging study. We therefore
labelled the patient one-liners according to the most relevant ACR Appropriateness Criteria Topic.

As of June 2024, there are 224 possible diagnostic radiology Topic labels.

To characterize the out-of-the-box alignment of language models with the ACR Appropriateness
Criteria, we evaluated 6 state-of-the-art LLM models on their ability to predict the most relevant
ACR AC Topic given an input patient case summary (Fig. 3.2): (1) DBRX Instruct (databricks/d-

brx-instruct) from Databricks is an open-source mixture-of-experts (MoE) model with a total of
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132B parameters (Team, 2024); (2) Llama 3 70B Instruct (meta-1lama/Meta-Llama-3-70B-Instru-
ct) from Meta Al is an open-source LLM with 70B total parameters (Al, 2024b); (3) Mistral 8x7B
Instruct (mistralai/Mixtral-8x7B-Instru ct-v0.1) from Mistral Al is an open-source sparse
MoE model with 47B parameters (Jiang et al., 2024); (4) Command R+ (CohereForAI/c4ai-com-
mand-r-plus) from Cohere for Al is an open-source retrieval-optimized model with 104B total
parameters (Al, 2024a); (5) GPT-4 Turbo (gpt-4-turbo-2024-04-09) from (OpenAl et al., 2024);
and (6) Claude Sonnet-3.5 (anthropic.claude-3-5-sonnet-20240620-v1:0) from (Anthropic,

2024) are proprietary LLMs with confidential model sizes.

Labelling one-liners by ACR Appropriateness Criteria Topics. In alignment with this plan,
two fourth-year U.S. medical students—supervised by two attending radiologists—manually an-
notated all RadCases scenarios according to the ACR AC Topic that best describes the patient case.
The two medical students and radiologists discussed cases where there was disagreement between
proposed annotations, and the attending radiologists” decision was final. In scenarios where mul-
tiple ACR AC Topics might apply to a single patient case, the more acute, life-threatening scenario
was used as the ground-truth label. Patient cases that were not well-described by any of the avail-

able ACR AC Topics were excluded from the dataset.

Evaluation metrics of language models according to the ACR Appropriateness Criteria. In our
experiments, we are interested in evaluation metrics that help us elucidate the performance of

LLMs as clinical decision support tools. We detail these metrics and how they are calculated below.

AnLLM’saccuracy is a score between 0 and 1. We evaluate two accuracy metrics in our experiments:
Topic Accuracy (Figs. 3.2-3.3) and Imaging Accuracy (Figs. 3.4-3.6). For a given input patient case
with ground truth ACR AC Topic y and model prediction ypeq, the Topic Accuracy is defined as the
binary indicator variable equal to 1if y = ypreq and 0 otherwise. Separately, suppose that according
to the ACR AC, the ground truth Topic y is associated with the set of clinically appropriate studies

K, and the model-predicted Topic ypreq is associated with the set of clinically appropriate studies

33



Kpred- The Imaging Accuracy is then defined as

Imaging Accuracy (Kpreq; K) = W
pre

Using the same notation as above, the rate of unnecessary imaging studies (i.e., false positive rate)
ordered by an LLM is a score between 0 and 1 defined as the frequency of evaluated patient cases
where (1) the ground truth set of appropriate studies K is identically equal to {No Imaging}; and
(2) No Imaging is not a member of Kpeq. Similarly, the rate of missed imaging studies (i.e., false
negative rate) ordered by an LLM is a score between 0 and 1 defined as the frequency of evaluated
patient cases where (1) No Imaging is not a member of K; and (2) Kpreq = {No Imaging}. Finally,
the F; score of an LLM is defined as F; = %, where T'P is the number of patient cases
where the LLM orders an imaging study that is clinically indicated, F'P is the number of patient

cases where the LLM orders an unnecessary study, and F'N is the number of patient cases where

the LLM incorrectly fails to order an imaging study according to the guidelines.

Importantly, we highlight that the construction of sets K and Kpeq from the Topic labels y and
Ypred are deterministically constructed and do not involve any LLM queries; instead, we use a cus-
tom Python (Python Software Foundation) web-scraping script with the Beautiful Soup (Leonard
Richardson) open-source library to define each set of appropriate imaging studies for all Topics in

the ACR AC from the URL https://gravitas.acr.org/acportal.
3.2.3. Optimization of Zero-Shot Prompt Engineering and Fine-Tuning Methods

In Figure 3.3, we explore 4 distinct LLM optimization strategies—retrieval-augmented genera-
tion (RAG), in-context learning (ICL), chain-of-thought (COT) prompting, and model fine-tuning
(MFT)—to improve the ability of LLMs like Claude Sonnet-3.5 and Llama 3 to accurately predict

relevant ACR AC Topics from input patient one-liner scenarios.

In our RAG approach, we first constructed the relevant reference corpus of guidelines made pub-
licly available by the American College of Radiology (ACR). A link to our custom script implemen-

tation is made publicly available at this URL. Using a custom Python script included in our publicly
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available code, we first used a web scraper, in compliance with the ACR Terms and Conditions, to
download relevant Portable Document Format (PDF) narrative files from acsearch.acr.org/list on
July 17, 2024. Each ACR AC Topic includes exactly one accompanying narrative document, result-
ing in a total of 224 narrative files extracted. We then used the Unstructured IO open-source library
to extract the PDF content into raw text, and chunked the text into 3,380 disjoint corpus documents
with sizes ranging between 1,119 and 2,048 characters per document. Our strategy for constructing

the retrieval corpus is identical to that used by Xiong et al. (2024).

Using this corpus of relevant guidelines written by the ACR, we explored 8 different retriever algo-
rithms to use for RAG: (1) Random, which randomly retrieves k corpus documents over a uniform
probability distribution; (2) Okapi BM25 bag-of-words retriever (Robertson and Zaragoza, 2009);
(3) BERT (Devlin et al., 2019) and (4) MPNet (Song et al., 2020) trained on unlabeled, natural lan-
guage text; (5) RadBERT (Yan et al., 2022) from fine-tuning BERT on radiology text reports; (6)
MedCPT (Jin et al., 2023) leveraging a transformer trained on PubMed search logs; and (7) Ope-
nAl (text-embedding-3-large) and (8) Cohere (cohere.embed-english-v3) embedding models
from OpenAl and Cohere for Al respectively. Retrievers (3) - (8) are embeddings-based retrievers
that leverage cosine similarity as the ranking function. These 8 retrievers represent a diverse array
of novel, well-studied, domain-agnostic, and domain-specific retrievers for RAG applications. In
Figure 3.3b-c, we report the results using the best retriever specific to each language model and
RadCases dataset subset, fixing the number of retrieved documents to k = 8 for each retriever. We

include the experimental results for each individual retriever in Supp. Figure A.3.

Separately in our ICL approach, we use the RadCases-Synthetic dataset partition as the corpus
of examples to retrieve from, and experimentally validate the same 8 retrievers used in RAG for
retrieving relevant one-liner/ ACR AC Topic pairs to provide as context to the language model. In
Figure 3.3b-c, we report the results using the best retriever specific to each language model and
RadCases dataset subset, fixing the number of retrieved examples to & = 4 for each retriever. To
evaluate language models on the RadCases-Synthetic dataset using ICL, we constructed a separate

corpus of synthetically generated, annotated one-liners to retrieve from that was created using the
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identical prompting strategy as that for the RadCases-Synthetic dataset, except we used the Meta
Llama 2 (7B) model (meta-1lama/Llama-2-7b-chat-hf). We leveraged this separate corpus for
in-context learning to avoid data leakage in our RadCases-Synthetic ICL evaluation experiments.
We include the experimental results for each individual retriever in Supp. Figure A.4, and ablate

the number of retrieved examples in Supp. Figure A.5.

In COT prompting, we explore four different reasoning strategies identical to those employed by
Savage et al. (2024): (1) Default reasoning, which does not specify any particular reasoning strat-
egy for the LLM to use; (2) Differential diagnosis reasoning, which encourages the model to rea-
son through a differential diagnosis to arrive at a final prediction; (3) Bayesian reasoning, which
encourages the model to approximate Bayesian posterior updates over the space of ACR AC Top-
ics based on the clinical patient presentation; and (4) Analytic reasoning, which encourages the
model to reason through the pathophysiology of the underlying disease process. We include the
experimental results for each individual reasoning strategy in Supp. Figure A.6. In Figure 3.2b-c,
we report the results using the best COT reasoning strategy specific to each language model and
RadCases dataset subset. In Figures 3.3-3.6, we report results using the Default reasoning strategy

when COT is leveraged together with Claude Sonnet-3.5.

For MFT, we explore three different fine-tuning strategies using the Meta Llama 3 base model:
(1) Full fine-tuning where all the parameters of the LLM are updated; and (2) Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022) and (3) Quantized Low-Rank Adaptation (QLoRA) (Dettmers et al.,
2024) fine-tuning where only the subset of linear LLM parameters are updated. We fix the number
of training epochs to 3 and the learning rate to 0.0001. For LoRA (resp., QLoRA), we use a rank of
64 (resp., 512) and an « scaling value of 8 (resp., 8). We chose these particular values according to
a hyperparameter grid search over the rank and o hyperparameters, logarithmically ranging from
8 to 512 (resp., 1 to 512), that maximize the accuracy of the fine-tuned model on a synthetic valida-
tion dataset. Due to limitations on local compute availability, we were only able to run the QLoRA
fine-tuning experiments on the internal experimental cluster; LoRA and Full fine-tuning experi-

ments were performed using a third-party platform (Together Al). Finally, we also investigate two
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different fine-tuning datasets for each of the three strategies: (1) fine-tuning on the RadCases-
Synthetic dataset; and (2) fine-tuning on 250 cases where 50 random cases come from each of the
five RadCases dataset subsets. To prevent data leakage, we use the Llama 2-generated Synthetic
dataset (constructed for a similar purpose in our ICL experiments above) to fine-tune the base
Llama 3 model for evaluation on the RadCases-Synthetic dataset in strategy (1), and avoid evalu-
ation on any cases from the individual patients represented in the fine-tuning dataset in strategy
(2). In Figure 3.3c, we report the results using the LoRA fine-tuning strategy and “mixed” fine-
tuning dataset of 250 cases described above, as this led to consistently superior fine-tuning results
across all datasets and language models that were evaluated. We report additional experimental

results in Supp. Figures A.8-A.9.
3.2.4. Translating ACR AC Topics Into Imaging Study Recommendations

In Figure 3.4a, we overview our Evidence-Based inference pipeline where we leverage LLMs to
assign ACR AC Topics to input patient one-liner scenarios, and then deterministically map Topics
to appropriate imaging studies based on the Appropriateness Criteria guidelines. These LLM-
generated recommendations were used as the basis of our retrospective and prospective studies
described in our work. Determining this mapping of Topics to imaging studies is a non-trivial task:
for any particular Topic, there are often multiple, nuanced clinical variants that are described the
ACR AC. For example, for the “Suspected Pulmonary Embolism” Topic, there are 4 variants in the

guidelines as of June 2024:

1. Suspected pulmonary embolism. Low or intermediate pretest probability with a negative

D-dimer. Initial imaging.

2. Suspected pulmonary embolism. Low or intermediate pretest probability with a positive

D-dimer. Initial imaging.
3. Suspected pulmonary embolism. High pretest probability. Initial imaging.

4. Suspected pulmonary embolism. Pregnant patient. Initial imaging.
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Each of these variants have different imaging recommendations: for example, variant (1) does
not warrant any imaging study according to the ACR AC, whereas both computed tomography
angiography (CTA) pulmonary arteries with intravenous (IV) contrast and a ventilation-perfusion
(V/Q) scan lung are appropriate studies for variant (3). To define a deterministic mapping of

topics to imaging studies, we therefore needed to isolate a single variant for each topic.

Our research team manually parsed through each of the 224 Topics to determine this single variant.
In general, the process involved reverse engineering a “typical” patient presentation that would be
described by a given Topic. In the above example, we reasoned that an acutely presenting pa-
tient where the most relevant Topic is “Suspected Pulmonary Embolism” would likely have a high
pretest probability for a pulmonary embolism. Furthermore, pregnant patients are less common
than non-pregnant patients in the emergency room, and the appropriate imaging studies for vari-
ant (3) are also appropriate for variant (4). For this reason, variant (3) was kept and the rest were
discarded. As a result, a predicted imaging study of either CTA pulmonary arteries with IV con-
trast or V/Q scan lung were both considered correct answers in this example. If no imaging study

was considered appropriate according to a guideline, then the ground-truth label was “None.’
3.2.5. Retrospective Study on Autonomous Image Ordering Using LLMs

To power our retrospective study comparing language models with clinicians, we extracted a di-
verse sample of 242 de-identified admission notes derived from the MIMIC-IV dataset made avail-
able by Johnson et al. (2023). These notes were extracted from the medical records of 100 real
patient admissions between 2008-2019 from the Beth Israel Deaconess Medical Center (Boston,
MA). To account for the limited patient information available in acute presentations, we manu-
ally truncated the admission notes to only include relevant patient history and vitals. Admission
notes were excluded from our analysis if either (1) the ACR Appropriateness Criteria contained
no evidence-based guidance relevant to the patient scenario; or (2) the scenario described a pa-
tient admission that was not made in the emergency department (e.g., ICU downgrade to hospital

floor). A total of 141 final patient scenarios were included in our analysis.

Using these patient scenarios, we prompted language models to predict up to m ACR AC Topics
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that may be relevant for a given patient, and programmatically referenced the ACR AC guidelines
to determine the recommended imaging studies based on the LLM-recommended Topic(s). We
set m = 1 Topic in our experiments and evaluated two LLMs from our original RadCases evalu-
ation suite: Claude Sonnet-3.5 from Anthropic Al using chain-of-thought (COT) prompting, and
Llama-3 70B Instruct from Meta Al using no special prompt engineering (we further ablate the
value of m in Supp. Figure A.10). We chose to evaluate these two models because they were the
best performing proprietary and open-source models on the RadCases benchmarks, respectively
(Fig. 3.2b). Simultaneously, we manually parsed through each of the full, original discharge sum-
maries to determine what imaging study(s) where ordered by the patient’s physician. The imaging
studies ordered by both clinicians and language models were compared against the ground-truth
bestimaging study (s) as determined by consensus between two expert radiologists and two fourth-

year U.S. medical students at the University of Pennsylvania.
3.2.6. Prospective Study on LLMs as Clinical Assistants

Constructing the patient cases for prospective user evaluation study. To enable our prospec-
tive evaluation of LLMs as clinical decision support tools for clinicians, we first constructed a sep-
arate dataset of 50 patient one-liners derived from the RadCases BIDMC one-liners. The initially
redacted details such as patient name, age, or gender were manually replaced with fictitious name,
age, and/or gender values. The cases were then reviewed and edited by three separate attending

physicians to ensure that the cases were representative of typical real-world patient cases.

Participant recruitment and compensation. In our work, we conducted a clinical study with U.S.
senior medical students and emergency medicine physicians to evaluate whether LLMs can serve
as helpful assistants in deciding what imaging studies to order. Participants for this prospective
study were recruited from the Perelman School of Medicine and the Hospital of the University
of Pennsylvania where this study was conducted. We provided a monetary incentive of $50 USD
to each opt-in, volunteer study participant, and the top 50% most accurate medical students and
physicians (scored separately) within each treatment arm were compensated with an additional
$10 USD to incentivize participants to perform to the best of their ability. Following prior work
(Bickman et al., 2021; Dutz et al., 2023; Garland et al., 2021; Halpern et al., 2021), we chose to offer
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this monetary compensation to improve recruitment rates and increase the diversity of opt-in par-
ticipants, especially given the fact that our study posed minimal risk to the participants. A total
of 23 medical students and 7 resident physicians participated in our experiment; all participating
medical students were required to have passed and completed the emergency medicine clinical

rotation at the University of Pennsylvania to participate in this study.

Participant task. Study participants were each tasked with ordering up to 1 diagnostic imaging
study for a standardized set of 50 simulated patient case descriptions derived from the MIMIC-IV
dataset (Johnson et al., 2023). Each case was presented on a custom-built website interface to dis-
play one patient case at a time; a visual of the custom interface is shown in Supp. Figure A.11.
For each case, participants selected an imaging study from a dropdown menu containing an al-
phabetized list of all 1150 diagnostic imaging studies officially recognized in the ACR Appropri-
ateness Criteria. Of the 50 simulated cases, a random subset of 25 cases was chosen at the per-
participant level that also showed LLM-generated recommendations for the participant to consult.
Study participants were allowed to consult any online resources that they would typically use in
evaluating patients in the emergency department, but were not allowed to consult any other in-
dividuals for assistance. In some simulated patient cases, more than one correct answer may be

possible—participants were instructed to select just one of those possible answers in these cases.

Separately, study participants were also asked to complete a 5-question multiple-choice survey
asking questions about their prior experience with Al tools, and overall sentiment about the use
of Al in medicine (Supp. Table A.10). All study participant answers to this short survey and
the overall prospective study were anonymized and aggregated before analysis; participants were

informed of this anonymization strategy in the informed consent.
3.2.7. Experimental Evaluation and Statistical Analysis

All models and prompting techniques were evaluated on a single internal cluster with 8 NVIDIA
RTX A6000 GPUs. The temperature of all models was set to 0 to minimize variability in the model
outputs. Each experiment was run using 5 random seeds, and we computed the mean accuracy of

each method with 95% confidence intervals (Cls) against the human-annotated ground truth la-
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bels. A p-value of p < 0.05 was used as the threshold for statistical significance. In all figures,
“n.s.” represents not significant (i.e., p > 0.05); a single asterisk p < 0.05; double asterisks
p < 0.01, and triple asterisks p < 0.001. All statistical analyses were performed using Python
software, version 3.10.13 (Python Software Foundation), the SciPy package, version 1.14.0 (En-

thought) (Virtanen et al., 2020), and the PyFixest package, version 0.24.2 (Bergé, 2018).
3.3. Results

3.3.1. RadCases: A Dataset for Evaluating LLM Alignment with the ACR Appropriateness Criteria

Prior work evaluating LLMs for medical use cases have primarily relied on datasets that either con-
tain complete pictures of patient presentations and outcomes (Kim et al., 2024; Savage et al., 2024;
Williams et al., 2024; Xiong et al., 2024) or are not representative of how clinicians discuss acute
patient presentations in practice (Nazario-Johnson et al., 2023; Zaki et al., 2024). As a result, such
existing datasets cannot help us adequately interrogate the ability of LLMs to take “natural med-
ical text” written by clinicians as input, and produce imaging recommendations that are aligned
with the ACR Appropriateness Criteria. To address this limitation, we constructed the RadCases
dataset, a labelled dataset of approximately 1,500 patient case descriptions that mimic the structure
of one-liner patient scenarios contained in medical documentation written by clinicians. The Rad-
Cases dataset is partitioned into 5 subsets: (1) Synthetic; (2) USMLE; (3) JAMA; (4) NEJM; and
(5) BIDMC—the source and construction of each subset is detailed in the Section 3.2. Each textual
description is labelled by the most appropriate ACR Appropriateness Criteria guideline Topic that
is most relevant to the patient case as determined by a consensus panel between U.S. attending
radiologists and medical students. As an example, the input one-liner “49M with HTN, IDDM,
HLD, and 20 pack-year smoking hx p/w 4 mo hx SOB and non-productive cough” is labelled with
the ACR AC Topic “Chronic cough.”

Neurologic topics were the most common label in all 5 RadCases subsets, followed by cardiac and
gastrointestinal conditions (Supp. Fig. A.1, Supp. Table A.1). We also found that our RadCases
patient case descriptions were representative of real-world patient one-liners previously written

by physicians in acute clinical workflows (Supp. Table A.2). Of note, while there were 224 unique
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diagnostic imaging topics in the ACR AC (as of June 2024 when this study was conducted), only
161 (71.9%) of all topics had nonzero support in the dataset. Furthermore, 73 (32.6%) unique
topics are represented in the Synthetic dataset; 61 (27.2%) in the USMLE dataset; 119 (53.1%) in
the JAMA dataset; 70 (31.3%) in the NEJM dataset; and 47 (21.0%) in the BIDMC dataset.
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Figure 3.2: Baseline LLM performance on the RadCases dataset. (a) We query a language model
to return the most relevant diagnostic radiology ACR AC Topic given an input patient one-liner
description. We then query the ACR AC to return the most appropriate diagnostic imaging study
(or lack thereof) given the predicted topic. (b) We evaluate six language models on their ability
to correctly identify the ACR AC Topic most relevant to a patient one-liner. Open-source models
are identified by an asterisk, and the best (second best) performing model for a RadCases dataset
partition is identified by a dagger (double dagger). Error bars are +£95% CI over n = 5 runs.

Using our RadCases dataset, we sought to evaluate if LLMs could yield better imaging study pre-

dictions if evidence-based guidelines were included as an explicit module in the patient scenario-
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imaging study inference pipeline. If a language model classified patient scenarios to a specific
guideline (i.e., a Topic of the ACR AC), then the best imaging study would be deterministically
identified by the content of the guideline itself. More concretely, we looked to query LLMs to map
input one-liners to output ACR Appropriateness Criteria Topics, and then programmatically map

these Topics to their corresponding evidence-based imaging recommendations (Fig. 3.2a).
3.3.2. Evaluating Large Language Models on the RadCases Dataset

Figure 3.2b shows the performance of the LLMs evaluated on each of the RadCases dataset sub-
sets. Of the language models evaluated, Claude Sonnet-3.5 performs the best on 4 out of the 5
subsets (i.e., Synthetic, JAMA, NEJM, and BIDMC) and the second best on the remaining subset
(i.e., USMLE). Furthermore, Claude Sonnet-3.5 outperformed all open-source models with sta-
tistical significance (two-sample, two-tailed homoscedastic ¢-test; Synthetic p = 0.0037, USMLE
p = 0.0003; JAMA p = 0.0016; NEJM p < 0.0001; BIDMC p = 0.0010). Separately, Llama 3
outperformed all other evaluated open-source models across all 5 RadCases subsets (two-sample,
two-tailed homoscedastic ¢-test; p < 0.0002 for all 5 subsets). Based on these results, we chose to
further optimize Claude Sonnet-3.5 and Llama 3 in subsequent experiments as the most promising

overall and open-source large language models, respectively.
3.3.3. Optimizing Large Language Models for Imaging Ordering in Acute Clinical Workflows

While Claude Sonnet-3.5 and Llama 3 demonstrated impressive baseline accuracy on the RadCases
dataset, recent work have introduced techniques to improve the performance of generative lan-
guage models. For example, retrieval-augmented generation (RAG) provides relevant context to
language models retrieved from an information corpus (i.e., the ACR AC narrative medical guide-
lines written by expert radiologists) to help improve the generative process. In-context learning
(ICL) provides relevant examples of patient one-liners and their corresponding topic labels (i.e.,
examples from the RadCases-Synthetic dataset) as relevant context to improve the zero-shot per-
formance of language models. Chain-of-thought (COT) prompting improves the complex reason-
ing abilities of language models by encouraging sequential, logical steps to arrive at a final answer.

Finally, model fine-tuning (MFT) directly updates the parameters of a language model to improve
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its performance on a specific task. We assess these strategies using Llama 3, and the zero-shot
strategies RAG, ICL, and COT using Claude Sonnet-3.5 as there is no publicly available application

programming interface (API) to fine-tune the proprietary model as of June 2024 (Fig. 3.3a).

Figure 3.3b shows that COT (chain-of-thought prompting) is the most effective strategy for Claude
Sonnet-3.5, resulting in improvements of up to 17% in ACR AC Topic classification accuracy and
consistent improvements across all five RadCases dataset subsets (two-sample, one-tailed homo-
scedastic t-test; p < 0.0001 for all subsets). Interestingly, this same strategy does not translate well
to Llama 3 (Fig. 3.3c); COT marginally improves upon baseline prompting for Llama 3 only on
the USMLE RadCases dataset. Instead, ICL (in-context learning) was the most effective prompt
engineering strategy for Llama 3, resulting in improvements of up to 9% on ACR AC Topic clas-
sification accuracy compared with naive prompting (two-sample, one-tailed homoscedastic ¢-test;
p < 0.0001 for USMLE and NEJM datasets). Additional fine-grained optimization results are in-

cluded in Supp. Figures A.3-A.9.

Our results show that while prompt engineering and other optimization techniques can indeed
be effective in improving the performance of different language models on this task, the trends in
improvements can be LLM-specific and fail to generalize across different language models. This
finding highlights the inherent challenge in optimizing such models for challenging tasks such as

diagnostic image ordering via alignment with the ACR AC.
3.3.4. Validating the LLM Prediction Pipeline

In Figure 3.2b, we demonstrated that LLMs could achieve promising accuracy on the ACR AC Topic
classification task; in Figure 3.3b-c, we further optimized two state-of-the-art language models
using prompt engineering techniques and model fine-tuning. Based on these results, we sought
to validate our original hypothesis and evaluate whether assigning ACR AC Topic predictions to

patient one-liners can meaningfully improve LLM diagnostic image study ordering.

We first mapped the ground-truth ACR AC Topic labels in the RadCases dataset to the ground-

truth imaging study recommended by the relevant Topic guidelines. We evaluated 3 pipelines
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Figure 3.3: Optimizing LLM performance on the RadCases dataset. (a) We explore 4 strategies
to further improve LLM alignment with the ACR AC: RAG and ICL provide additional context
to an LLM as input, COT encourages deductive reasoning, and MFT optimizes the weights of the
LLM itself. Each optimization strategy is independently implemented and compared against the
baseline prompting results in Figure 3.2 for (b) Claude Sonnet-3.5 and (c¢) Llama 3. Error bars
represent +£95% CI over n = 5 independent experimental runs.



using Claude Sonnet-3.5: (1) Baseline, which queries an LLM to directly recommend a diagnostic
imaging study; (2) Evidence-Based Baseline, which queries an LLM to recommend an ACR AC
Topic that is then mapped to the imaging study; and (3) Evidence-Based Optimized, which is the

same as (2) but uses optimized COT prompting from Figure 3.3b for Claude Sonnet-3.5 (Fig. 3.4a).
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Figure 3.4: Comparison of baseline and evidence-based inference pipelines with Claude
Sonnet-3.5. (a) Using our evidence-based inference pipeline, we query the LLM to predict the
single ACR AC Topic most relevant to an input patient one-liner, and then refer to the ACR AC
guidelines to make the final recommendation for diagnostic imaging. An alternative approach is
the baseline inference pipeline where we query the LLM to recommend a diagnostic imaging study
directly without the use of the ACR AC. (b) Our evidence-based pipelines (both using baseline
prompting and optimized using chain-of-thought (COT) prompting) significantly outperform the
baseline pipeline by up to 62.6% (two-sample, one-tailed, homoscedastic ¢-test; p < 0.0001 for all
RadCases datasets). At the same time, they also reduce the rates of both (c¢) unnecessary imaging
orders and (d) missed imaging orders (two-sample, one-tailed, homoscedastic ¢-test; p < 0.05 for
all RadCases datasets). Error bars represent £95% CI over n = 5 independent experimental runs.
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Figure 3.5: Comparison of Llama 3 baseline and evidence-based inference pipelines. (a) Us-
ing our evidence-based inference pipeline identical to that shown in Fig. 3a in the main text, we
query the Llama 3 to predict the ACR AC Topic most relevant to an input patient one-liner, and
programmatically refer to the evidence-based ACR AC guidelines to make the final recommenda-
tion for diagnostic imaging (Evidence-Based). An alternative approach is the baseline inference
pipeline where we query the LLM to recommend a diagnostic imaging study directly without
the use of the ACR AC (Baseline). Because there was no consistently optimal prompting or fine-
tuning strategy that outperformed baseline prompting in Fig. 3.3¢c, we only empirically evaluated
the baseline Evidence-Based inference strategy here. (b) Our evidence-based pipeline significantly
outperforms the baseline pipeline by up to 57.3% (two-sample, one-tailed, homoscedastic ¢-test;
p < 0.0001 for all RadCases datasets). At the same time, the also reduce the rates of both (¢) un-
necessary imaging orders and (d) missed imaging orders (two-sample, one-tailed, homoscedastic
t-test; p < 0.002 for all RadCases datasets). Error bars are £95% CI over n = 5 experimental runs.

Our results demonstrate that our evidence-based algorithm of leveraging LLMs to map to ACR AC
Topics provides significant improvements in the overall imaging accuracy achieved by the model.

Across all 5 RadCases dataset subsets, our Evidence-Based Baseline (resp., Evidence-Based Opti-
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mized) pipeline outperforms the Baseline pipeline by at least 40% (resp., 42%) on imaging accu-

racy (two-sample, one-tailed homoscedastic ¢-test; p < 0.0001 (Fig. 3.4b).

Interestingly, while the Evidence-Based Optimized pipeline significantly outperformed the Base-
line pipeline on ACR AC Topic classification accuracy (Fig. 3.3b), we did not observe a statistically
significant improvement in the optimized versus baseline Evidence-Based pipelines on the imag-
ing classification accuracy (two-sample, one-tailed homoscedastic t-test; p > 0.346 for each of the
4 RadCases dataset subsets). Qualitatively, we found that although the Evidence-Based Baseline
pipeline achieved a lower ACR AC Topic classification accuracy compared to the Evidence-Based
Optimized inference strategy, its incorrect predictions were still closely related to the correct answer
and underlying patient pathology. For example, a ground truth ACR AC Topic might be “Major
Blunt Trauma” and the LLM prediction “Penetrating Torso Trauma;” although the LLM identified
the incorrect ACR AC Topic label, both Topics warrant a “Radiography trauma series.” As a result,
both the optimized and baseline Evidence-Based pipelines achieve comparable imaging accuracy

and significantly improve upon the Baseline pipeline.

We also evaluated the false positive and false negative rates in image ordering. Formally, false
positives are cases where an imaging study is unnecessarily ordered, and false negatives are cases
where a diagnostic imaging study was warranted but not ordered. Both Evidence-Based pipelines
again outperform the Baseline pipeline according to both metrics, significantly reducing the rates
of false positives and false negatives (two-sample, one-tailed homoscedastic t-test; p < 0.0001 for

the Synthetic, USMLE, JAMA, and NEJM subsets).
3.3.5. Investigating Autonomous Image Ordering using LLMs versus Standard of Care

Based on the initial results in Figures 3.4-3.5, we next looked to assess if state-of-the-art, opti-
mized language models could be used to accurately order imaging studies for acutely presenting
patients without clinician intervention. Using a set of anonymized, de-identified admission notes
derived from the medical records of 100 real patient admissions between 2008-2019 from the Beth
Israel Deaconess Medical Center (Boston, MA) (Johnson et al., 2023) we compared the accuracy

of diagnostic image ordering of the prompt-optimized versions of Claude Sonnet-3.5 and Llama
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3 with that of clinicians. In Figure 3.6, our results suggest that autonomous LLMs can be effec-
tive tools in ordering diagnostic imaging: Claude Sonnet-3.5 achieved a higher accuracy score of
58.0% and F; score of 94.4% compared with clinicians (accuracy 39.3%; F; score 92.5%) (McNe-
mar test; p = 0.044). Similarly, there was no statistically significant difference between Llama 3
(accuracy 61.5%; Fi score 92.9%) and clinicians (McNemar test; p = 0.099). Across the patient
cases assessed, clinicians ordered an average of 1.41 (95% CI: [1.28 — 1.53]) imaging studies per
case; similarly, Claude Sonnet-3.5 ordered an average of 1.83 (95% CI: [1.60 — 2.06]) and Llama 3
an average of 1.54 (95% CI: [1.33 — 1.76]) studies per case. There was no statistically significant dif-
ference between the number of imaging studies ordered by Llama 3 and its clinician counterparts

(two-sample paired t-test; Llama 3: p = 0.269).

We also evaluated the rates of both unnecessary and missed imaging studies: both Claude Sonnet-
3.5 and Llama-3 were non-inferior to clinicians according to both metrics, achieving a false positive
rates (FPR) of 6.90% and 6.90% (clinician FPR = 7.76%) (McNemar test; p = 1.00) and false neg-
ative rates (FNR) of 3.45% and 6.03% (clinician FNR = 6.03%) (McNemar test; Llama 3: p = 1.00;
Claude Sonnet-3.5: p = 0.549), respectively (Fig. 3.6b-c). Altogether, these results suggest that

LLMs can be promising tools for image ordering in clinical workflows.

Finally, to gauge the similarity between recommendations made by different language models and
clinicians, we computed the pairwise Dice-Serensen coefficient (DSC) between imaging recom-
mendations made by different decision makers (Fig. 3.6f). According to this metric, we found
that recommendations made by different language models consistently aligned significantly more

closely than those made by language models and clinicians.
3.3.6. Evaluating LLMs As Support Tools for Clinician Diagnostic Image Ordering

We assessed LLMs as autonomous agents for clinical decision making above. Such retrospective
studies help clarify the technical capabilities and limitations of these models compared with stan-

dard of care. However, LLMs can also act as assistants for clinicians in diagnostic image ordering.
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Figure 3.6: Retrospective study of clinician- and LLM- ordered imaging studies. We compare the
diagnostic imaging studies ordered by the prompt-optimized LLMs Claude Sonnet-3.5 and Llama
3 against those ordered by clinicians in a retrospective study. Compared with clinicians, Claude
Sonnet-3.5 and Llama 3 achieve the same or better (a) accuracy scores; and (b) false positive rates
(i.e., the rate at which a patient received at least one unnecessary imaging recommendation); (c)
false negative rates (i.e., the rate at which a patient should have received an imaging workup but
did not); and (d) Fy scores. (e) We observe that Claude Sonnet-3.5 orders a greater number of
recommended imaging studies compared to clinicians. (f) Claude Sonnet-3.5 and Llama 3 order
imaging studies that are more similar to one another than to clinicians (two-sample, two-tailed
homoscedastic t-test; p < 0.0001).

To evaluate the utility of our evidence-based LLMs as clinical assistants, we conducted a prospec-
tive randomized control trial* asking volunteer clinician participants to order diagnostic imaging

studies for simulated patient scenarios in an online testing environment. Participants were U.S.

4Pre-registration on AsPredicted, #185312. Link: https://aspredicted.org/x6b9-rcgh.pdf
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medical students and emergency medicine resident physicians recruited from the Perelman School
of Medicine and the Hospital of the University of Pennsylvania. This study was exempted by the

University of Pennsylvania Institutional Review Board (Protocol #856530).

Each study participant was asked to order a single imaging study (or forego imaging if not in-
dicated) for 50 simulated patient cases. For each participant, a random 50% of the patient cases
included recommendations generated by Claude Sonnet-3.5 using the evidence-based optimized
inference strategy in Fig. 3.4. To simulate the acuity and high-pressure of many emergency room
environments, participants were required to complete the study at an average rate of 1 case per

minute in a single setting. We then fitted a regression model according to

Ys,q = PBo + (B1 - WithLLMGuidance; ) + 6, + xs + €54 (3.1)

where s indexes study participants and ¢ study questions, and y; 4 is a binary variable indicating
whether participant s answered study question ¢ correctly. Here, 6 is a g-vector of study question
fixed effects, x5 are control variables specific to the study participant (i.e., whether the study partic-
ipant is a physician or medical student, the participant’s personal experience with Al, and the par-
ticipants’ sentiment regarding Al), and ¢; 4 is the error term. We estimate (3.1) using standard er-
rors clustered at the study participant level and question level. Furthermore, WithLLMGuidance, ,
is a binary indicator that indicates whether LLM-generated guidance was provided for question ¢
for participant s, respectively. Study participants generally found the study task challenging, with
an average accuracy of 15.8% (95% CI: [12.2% - 19.3%]) without LLM guidance and 25.0% (95% CI:
[20.7% - 29.3%]) with guidance. Offering LLM-based recommendations using our evidence-based
optimized pipeline improved image ordering accuracy with statistical significance (5; = 0.081;

95% CI: [0.022 - 0.140]; p = 0.011) for both medical students and resident physicians.

To verify that participants were indeed taking advantage of LLM-generated recommendations
when made available, we fitted a separate regression model analogous to that in (3.1) that in-
stead measures that binary agreement between LLM recommendations and participant answers

as the dependent variable. As expected, the agreement between answers and assistant recom-
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mendations increases when the recommendations are made available to the clinician (5, = 0.141;
95% CI: [0.050 - 0.233]; p = 0.005). These results suggest that language models can act as clinical

assistants to help clinicians order imaging studies more aligned with evidence-based guidelines.

Similarly, we did not observe statistically significant differences in either the false positive rate
(81 = 0.008; 95% CI: [-0.012 - 0.027]; p = 0.418) or false negative rate (5; = —0.019; 95% CI:
[-0.068 - 0.030]; p = 0.431). This ensures that the improvements in accuracy scores with LLM
guidance were not at the cost of significantly increasing the number of unnecessary or missed
imaging studies ordered by clinicians. Additional analysis is included in Supp. Tables A.4-A.10,

and discussion of experimental results in Section A.1.
3.4. Discussion

Our study investigates the potential of LLMs in the domain of diagnostic image ordering—a task
critical to the timely and appropriate management of acute patient presentations. Our results
demonstrate how state-of-the-art language models can be used in the context of diagnostic image
ordering in acute clinical settings, such as the emergency department. Firstly, we observed that
generalist language models—such as Claude Sonnet-3.5 and Meta Llama 3—can accurately pre-
dict relevant ACR AC Topic labels to describe patient one-liner descriptions without any domain-
specific fine-tuning. By leveraging LLMs to predict Topic labels instead of imaging studies directly,
we achieved significant improvements in the quality of final imaging recommendations made by
LLMs. Comparing language models with clinicians in a retrospective study, we show that LLMs
achieve better accuracy with regard to image ordering in the ED without significant changes to the
rate of missed imaging (FNR), rate of unnecessary imaging (FPR), or number of recommended
imaging studies. Finally, we demonstrate that LLMs can be leveraged by clinicians as a CDS assis-
tant to improve the accuracy of ordered imaging studies without significant changes to the FPR or

FNR in a simulated acute care environment.

Importantly, we demonstrate how integrating evidence-based guidelines (i.e., the ACR AC) di-
rectly into the LLM-based inference pipeline can significantly improve the accuracy of clinical rec-

ommendations. This approach not only aligns model predictions with established guidelines, but
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also provides a robust framework for reducing the rates of both unnecessary and missed imaging
orders. In theory, such a framework could be readily translatable for other clinical use cases that
make use of available guidelines, such as the American College of Gastroenterology guidelines
to determine clinical indications for endoscopy (Gabelloni et al., 2020; Park et al., 2015; Patel et al.,
2022), or the American Society of Addiction Medicine guidelines for the management of alcohol
withdrawal syndrome (of Addiction Medicine, 2020). We leave these potential future applications

of LLM-based CDS tools for future work.

We also highlight the challenges associated with integrating novel LLM toolkits into existing clin-
ical workflows. Our prospective study demonstrated preliminary evidence that the utility of LLM
clinical assistants can be largely dependent on factors such as user expertise, acuity of care, and
existing user attitudes on Al, consistent with prior work (Agarwal et al., 2023; Prinster et al., 2024;
Rau et al., 2023). Nonetheless, we observed that the accuracy of imaging studies ordered by clini-
cians increased by approximately 10 percentage points on average, which can potentially translate
to hundreds of dollars saved per patient in reducing low-value and unnecessary imaging studies
according to recent work (Brady et al., 2020; Kjelle et al., 2022; Yan et al., 2024). That being said, we
highlight that our study was limited by a relatively small sample size of only 23 medical students
and 7 junior emergency resident physicians. Furthermore, our study participants voluntarily opted
in to participate in our study, and may not reflect the attitudes and behaviors of clinicians that may
have a more conservative predisposition to the use of Al tools in healthcare. Finally, we highlight
that ED residents at large academic institutions (such as the University of Pennsylvania where this
study was conducted) may not currently be trained to order imaging studies in alignment with
the ACR AC, as the benefit-to-cost ratio of obtaining more extensive imaging studies may be dif-
ferent institutionally than as dictated by national guidelines. Given these considerations, future
work is warranted to better characterize the impact of these factors across diverse populations of
healthcare workers as they affect real-world clinical workflows and physician thinking, ultimately

ensuring that LLMs are used responsibly and can improve patient care.

Of note, our results consistently demonstrate that proprietary language models, such as Claude
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Sonnet-3.5, consistently and significantly outperform open-source models. While the performance
of Claude Sonnet-3.5 is impressive, it is unlikely that current publicly available inference APIs for
the model are sufficient for widespread clinical deployment, as many hospitals understandably
express concerns over patient privacy and unknown data handling practices from third-party ven-
dors. In these settings, our experimental results suggest that open-source language models, such
as Llama 3, can be potentially viable alternatives. Future work might investigate other strategies

that better leverage open-source models in our proposed pipeline.

This study also has its limitations. Firstly, because most of the patient descriptions in our Rad-
Cases dataset are derived from real medical sources, they also reflect inherent biases with respect
to patient demographics and medical conditions. For example, we found that our dataset most
commonly included ground-truth ACR AC Topic labels related to gastrointestinal, cardiac, and
neurologic pathologies—while these cases may reflect real-world ED visit patterns, it remains to
be seen how LLMs perform on other patient cases sampled from different underlying distributions,

such as in rare disease diagnostics and low-resourced patient populations.

Furthermore, closely related topics (e.g., “Major Blunt Trauma” and “Penetrating Torso Trauma”)
often share clinical indications for the same set of imaging studies (e.g., “Radiography trauma
series”). As a result, our choice of imaging accuracy evaluation metrics in Figures 3.4-3.6 still
permits an LLM to predict the correct imaging study even if an incorrect ACR AC Topic was iden-
tified. This potential limitation of models achieving the “right answer through the wrong reason-
ing” is well-documented in prior and concurrent work examining discrepancies between model
reasoning traces and final predictions (Agarwal et al., 2024a; Braun et al., 2019; Chen et al., 2025b;
Hager et al., 2024; Lin et al., 2022; Turpin et al., 2023). However, even if we require our language
models to obtain the “right answer through the right reasoning,” our inference strategy in Fig-
ure 3.4a still outperforms baseline reasoning strategies (i.e., the ACR AC Topic Prediction accuracy

in Figure 3.3b-c is greater than the imaging accuracy of baseline LLMs in Figure 3.4b).

We also highlight that our main experimental results are reported on the subset of patient cases

with at least one ACR AC Topic label. In general, patient one-liners with no matching ground-
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truth label were excluded from our analysis; see our Section 3.2 for additional details. In Supp.
Table A.3, we investigate the ability of language models to predict whether there exists at least one
ACR AC Topic that is relevant for a given patient as a binary classification task. Future work might
explore multi-step pipelines involving sequential LLM queries that first determine if a set of ACR

AC Topics is relevant before predicting the most relevant Topic within the set.

Importantly, we also emphasize even though we leverage the ACR AC as a ground truth symbol
in our experiments (Fig. 3.2-3.3), evidence-based guidelines like the ACR AC are ultimately rec-
ommendations that should be used in conjunction with clinical expertise to help physicians make
the most appropriate decisions regarding the role of diagnostic imaging. Such recommendations
may therefore fall short in more challenging patient cases not considered in this work, such as
those with multiple medical conditions, complex admissions, and/or prior imaging studies that
can drastically affect the appropriateness of different diagnostic methods. For these reasons, we
argue thatany LLM-based clinical decision support tool should ultimately be used in the same fash-
ion, where LLM-generated recommendations are used by clinicians together with their individual

expertise to best contextualize the role of diagnostic imaging in specific patient scenarios.

Finally, we emphasize that our experiments, while promising, are no substitute for true prospec-
tive evaluation of language models as clinical decision support tools in real-world clinical work-
flows, such as those in the emergency department (Chen et al., 2025b). We particularly highlight
that practical applications of our work might focus on targeting clinical decision making for costly
imaging studies (e.g., magnetic resonance imaging) and those associated with high radiation doses
(e.g., computed tomography). Future work is needed in close collaboration with clinicians across

a variety of clinical environments to truly validate the clinical utility of our LLM-based pipelines.

In conclusion, our study highlights the potential of LLMs to enhance the process of diagnostic
image ordering by leveraging evidence-based guidelines. By simply mapping patient scenarios to
interpretable ACR AC Topics, we show that LLMs can improve the accuracy of imaging decisions
in simulated acute healthcare environments. Our findings suggest that our approach can better

adapt LLMs for clinical tasks, such as improving patient care in acute diagnostic workflows.
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CHAPTER 4

CLINICALLY DERIVED PRIORS FOR MEDICAL IMAGING ANALYSIS

This chapter is based on work published in the following co-first-author manuscripts:

(Chae et al., 2024) Allison Chae*, Michael S Yao*, Hersh Sagreiya, Ari D Goldberg, Neil Chatter-
jee, Matthew T MacLean, Jeffrey Duda, Ameena Elahi, Arijitt Borthakur, Marylyn D Ritchie, Daniel
Rader, Charles E Kahn, Walter R Witschey', and James C Gee'. Strategies for implementing ma-
chine learning algorithms in the clinical practice of radiology. Radiology, 310(1):e223170, 2024. doi:
10.1148/radiol.223170

(Yao et al., 2023) Michael S Yao*, Allison Chae*, Matthew T MacLean, Anurag Verma, Jeffrey Duda,
James Gee, Drew Torigian, Daniel Rader, Charles Kahn, Walter R WitscheyT, and Hersh SagreiyaT.
SynthAlc: Towards clinically interpretable patient representations for diabetes risk stratification.

In Predictive Intelligence in Medicine, pages 46-57, 2023. doi: 10.1007/978-3-031-46005-0_5

Here, * denotes the co-first authorship and T denotes co-senior authorship. In both works, I led the
experimental design and analysis of results, developed and validated the technical methodology,
and co-led the writing and submission of the manuscript texts. The contents of this chapter are not

described in detail in any past, present, or future dissertation(s) by any co-author listed above.
4.1. Introduction

In Chapter 3, we explored how evidence-based medical guidelines could be used to define inter-
pretable representations in ML prediction pipelines. Here, I discuss how clinical knowledge made

available by human domain experts can be used to define interpretable representations, too.

Type 2 Diabetes Mellitus (T2DM) affects over 30 million patients in the United States, and is most
commonly characterized by elevated serum hemoglobin Alc (HbAlc) levels measured through a
blood sample (Khan et al., 2020; Xu et al., 2018). A patient is considered diabetic if their HbAlc is

greater than 6.5% Alc. Patients diagnosed with T2DM are at an increased risk of many comorbidi-
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ties, but early diagnosis and interventions can improve outcomes (Albarakat and Guzu, 2019).

However, delayed diagnosis of T2DM is frequent due to a low rate of screening. Up to a third of
patients are not screened for T2DM as recommended by current national guidelines (Kaul et al.,
2022; Polubriaginof et al., 2019), and Porter et al. (2022) estimate that it would take over 24 hours
per day for primary care physicians to follow national screening recommendations for every adult
visit. Furthermore, T2DM screening using patient bloodwork is not routinely performed in acute
urgent care settings or emergency department (ED) visits. Given these obstacles, machine learning

(ML) is a promising tool to predict patient risk for T2DM and other diseases (Farran et al., 2013).

Simultaneously, the usage of radiologic imaging in clinical medicine continues to increase every
year (Dowhanik et al., 2022; Hong et al., 2020; Chae et al., 2024). Considering our own institution
as an example, the number of imaging studies deposited in the Penn Medicine BioBank grows
steadily year-over-year (Fig. 4.1b). Similarly, a large proportion of patients also have multiple
imaging studies deposited (Fig. 4.1c-d), collectively amounting to hundreds of thousands of real-
world patient data that can be used to learn clinical predictive algorithms (Fig. 4.1a). Of note, over
70 million computed tomography (CT) scans are performed annually, and their utilization has
become increasingly common in both primary care and ED visits (Dowhanik et al., 2022). Con-
sequently, the wealth of CT radiographic data can potentially be used to estimate patient risk for
T2DM as an incidental finding in these clinical settings. For example, T2DM risk factors include
central adiposity and the buildup of excess fat in the liver that can be readily estimated from clinical
CT scans. Liver fat excess can be estimated by calculating the spleen-hepatic attenuation difference
(SHAD), which is the difference between liver and spleen CT attenuation (MacLean et al., 2021).
These metrics are examples of image-derived phenotypes (IDPs) derived from patient CT scans
and other imaging modalities. Other IDPs, such as volume estimation of subcutaneous fat and
visceral fat, can also be used to quantify central adiposity. In Fig. 4.2, we plot how the distribu-
tion of (the principal component of) the IDPs changes as a function of disease, demonstrating a
statistically meaningful association between IDP values and clinical manifestations of diabetes and

metabolic syndrome (e.g., obesity, obstructive sleep apnea, hypertension, and non-alcoholic fatty

57



liver disease). Using these metrics derived from both imaging data and expert knowledge of the
clinical manifestations of diabetes, a prediction model could report estimated T2DM risk as an in-
cidental finding during an unrelated outpatient imaging study or ED visit workup as a means of
opportunistic risk stratification from analysis of CT scans and patient information, with automated

referral of high-risk patients for downstream screening for diabetes.
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Figure 4.1: Overview of Penn Medicine BioBank (PMBB) imaging data. (a) Bar graph shows
the number of studies within the Penn Medicine BioBank by imaging modality. The number of
studies per Penn Medicine BioBank capita is the average number of studies per patient within the
Penn Medicine BioBank. (b) Line graph shows the number of imaging studies acquired per year
contained within the Penn Medicine BioBank by imaging modality. (c) Line graph of 1 — CDF,
where CDF is the cumulative distribution function. 1 — CDF corresponds to the proportion of pa-
tients (by modality) according to number of examinations. (d) Histogram shows the time between
sequential repeat imaging studies by patient for the four most common imaging modalities.
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Existing machine learning methods for disease prediction have largely focused on developing clas-
sification models that output probability values for different physiologic states (Uddin et al., 2019;
Kopitar et al., 2020; Deberneh and Kim, 2021). However, these metrics are difficult for clinicians to
interpret at face value and cannot be intelligently integrated into existing clinician workflows, such

as diagnostic pathways based on clinical lab findings (Sivaraman et al., 2023).

In this study, we hypothesized that radiomic metrics derived from CT scans could be used in con-
junction with physical examination data to predict patient T2DM risk using SynthAlc, a novel
synthetic in silico measurement approximating patient blood hemoglobin Alc (HbA1lc) (Fig. 1.1).
To predict model generalizability, we also propose a generalizable data augmentation-based model

smoothness metric that predicts SynthAlc accuracy on previously unseen OOD patient datasets.
4.2. Materials and Methods
4.2.1. Patient Cohort and Data Declaration

The data used for our retrospective study were made available by the Penn Medicine BioBank
(PMBB), an academic biobank established by the University of Pennsylvania (Chae et al., 2024).
All patients provided informed consent to utilization of de-identified patient data, which was ap-
proved by the Institutional Review Board of the University of Pennsylvania (IRB protocol 813913).
From the PMBB outpatient dataset, we obtained patient ages, genders, ethnicities, heights, weights,
blood pressures, abdominal CT scans, and blood HbA1lc measurements. Notably, the only labora-
tory value used was HbAlc as a ground truth metric in model training and evaluation—no blood

biomarkers were used as model inputs. Patients with any missing features were excluded.

Using the pre-trained abdominal CT segmentation network trained and reported by MacLean et al.
(2021), we estimated four IDPs from any given CT of the abdomen and pelvis study (either with
or without contrast) to be used as model inputs. Our four IDPs of interest were mean liver CT
attenuation, mean spleen CT attenuation, and estimated volume of subcutaneous fat and visceral
fat. Briefly, their segmentation network achieved mean Serenson-Dice coefficients >98% for all IDP

extraction tasks assessed (including our four IDPs of interest).
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Figure 4.2: Comparing principal component distributions of six image-derived phenotype
(IDP) metrics computed from abdominal CT scans from 1276 anonymized patients in the Penn
Medicine BioBank. These image-derived phenotypes included liver CT attenuation, spleen CT at-
tenuation, liver volume, spleen volume, visceral fat volume, and subcutaneous fat volume. Using
principal component analysis (PCA), the principal component of these image-derived phenotypes
was extracted and its distribution was plotted as a histogram for patients stratified by different
clinical diagnoses. Bar graphs show different image-derived phenotype principal component dis-
tributions in patients without diagnoses (gray bars) versus in patients diagnosed with (a) obesity
(n =91), (b) obstructive sleep apnea (n = 201), and (c) hypertension (n = 1082). Image-derived
phenotype principal component distributions in patients without diagnoses (gray bars) versus
in patients diagnosed with (d) nonalcoholic fatty liver disease (NAFLD; n = 429) and (e) dia-
betes (n = 790). (f) Genitourinary diseases (n = 1202), which are not clinically associated with
these image-derived phenotype metrics, were not associated with a statistically significant differ-
ent principal component distribution compared with healthy patients. p values were calculated
by comparing distributions of patients with and without the disease according to a two-sample
Kolmogorov-Smirnov test for goodness of fit.
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Any patient 7 has a set of measured values of any particular feature within the dataset. To construct
a feature vector x associated with an HbAlc measurement y;, we selected the patient’s measure-

ments that minimized the time between the dates the feature and y; were measured.
4.2.2. Machine Learning Models: GBDT, NODE, and FT-Transformer

Current supervised methods for disease detection work with feature vectors derived from pa-
tient physical examinations and clinical laboratory values (Farran et al., 2013; Uddin et al., 2019;
Kopitar et al., 2020). Our work builds on these prior advances by incorporating IDPs as additional
input vector dimensions. Previously, Chen and Guestrin (2016) introduced gradient-boosted de-
cision trees (GBDTs) that incorporate scalable gradient boosting with forest classifiers for state-
of-the-art prediction accuracy across tasks. A separate class of machine learning models is deep
neural networks (DNNs). Recently, neural oblivious decision ensemble (NODE) DNNs achieved
classification performance on par with decision tree models on certain tasks (Popov et al., 2019)
and the Feature Tokenizer + Transformer (Gorishniy et al., 2021) effectively adopts transformer
architectures to tabular data. Here, we assessed NODE, FT-Transformer, and GBDT architectures

as backbones for our SynthAlc encoders.

We sought to compare our proposed SynthAlc models against a number of baselines. We looked
at Ordinary Least Squares (OLS) encoders and traditional diabetes binary classifier models with
the same three architectures as proposed above, in addition to a zero-rule classifier and a multi-
rule questionnaire-based classifier currently recommended for clinical practice by the American

Diabetes Association and Centers for Disease Control and Prevention (Bang et al., 2009).
4.2.3. Model Training and Evaluation Strategy

Our model inputs can be divided into two disjoint sets: clinically derived phenotypes (CDPs),
which are derived from physical examination, and image-derived phenotypes (IDPs) that are esti-
mated from abdominal CT scans herein. The specific CDPs and IDPs used depended on the model
class—broadly, we explored two categories of models, which we refer to as r-type and p-type. r-
type models were trained on ‘raw” data types (CDPs: height, weight, race, gender, age, systolic

blood pressure [SBP], diastolic blood pressure [DBP]; IDPs: liver CT attenuation, spleen CT at-
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tenuation, subcutaneous fat [SubQ Fat], visceral fat [ Visc Fat]), while p-type models were trained
on ‘processed” data types (CDPs: BMI, race, gender, age, SBP, DBP; IDPs: SHAD, SubQ Fat, Visc
Fat). Comparing the performance of r- and p- type models could help us better understand if using

derivative processed metrics clinically correlated with T2DM risk yields better model performance.

SynthAlc encoders were trained to minimize the L, distance from the ground truth HbAlc lab-
oratory measurement, and evaluated using the root mean square error (RMSE) and Pearson cor-
relation coefficient (PCC). We then compared the predicted SynthAlc values with the traditional
HbAlc > 6.5% Alc diabetes cutoff to assess the utility of SynthAlc outputs in diagnosing T2DM.

A p value of p < 0.05 was used to indicate statistical significance.
4.2.4. Implementation Details

NODE models were trained with a batch size of 16 and a learning rate of » = 0.03, which decayed
by half every 40 epochs for a total of 100 epochs. FT-Transformer models were trained with a batch
size of 128 and a learning rate of = 0.001, which decayed by half every 50 epochs for a total of 100
epochs. GBDT models were trained using 32 boosted trees with a maximum tree depth of 8 with

a learning rate of n = 0.1.
4.2.5. Assessing Out-of-Domain Performance

An important consideration in high-stakes clinical applications of machine learning is the gener-
alizability of T2DM classifiers to members of previously unseen patient groups. Generalizability
is traditionally difficult to quantify and can be affected by training data heterogeneity and the ge-

ographic, environmental, and socioeconomic variables unique to the PMBB dataset.

Prior work has shown that model smoothness can be used to predict out-of-domain generalization
of neural networks (Ng et al., 2023; Jiang et al., 2021). However, these works largely limit their
analysis to classifier networks. To evaluate SynthAlc encoder robustness, we develop an estimation
of model manifold smoothness M for our encoder models. Under the mild assumption that our

SynthAlc encoder function y : R¥l — R is Lipschitz continuous, we can define a local manifold
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where we have a feature vector x in domain D and a neighborhood N (x) € D around x with an
associated volume of V[N (x)]. We also define 6x = x—%, © as the Hadamard division operator, and
ox as the vector of the estimated standard deviations of each feature over D. The exact expectation
value over a given neighborhood N (x) is computationally intractable, but we can approximate it

with a Monte Carlo integration through an empirical sampling of () random points x, from N (x):
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We can now define a metric M for the global encoder manifold smoothness over a domain D as
the expectation value of ;1(x) over D, which can similarly be approximated by an empirical sam-
pling of N feature vectors x1,x2,...,xy € D. We hypothesized that this global smoothness metric
M inversely correlates with model performance on out-of-domain datasets. To evaluate this ex-
perimentally, we assessed model performance on two previously unseen T2DM datasets: (1) the
Iraqi Medical City Hospital dataset (Rashid, 2020); and (2) the PMBB inpatient dataset. The Iraqi
dataset contains 1,000 sets of patient age, gender, BMI, and HbAlc measurements. Because of this
limited feature set, we trained additional SynthAlc encoders (referred to as p’-type models) on the
PMBB outpatient dataset using only these features. The PMBB inpatient dataset consists of 2,066

measurements of the same datatypes as the outpatient dataset (Section 4.3.1).
4.3. Results

4.3.1. Summary Statistics

Our model-building dataset from the PMBB consisted of 2,077 unique HbAlc measurements (1,159
diabetic, 619 prediabetic, 299 nondiabetic) derived from 389 patients (Table 4.1). 208 (10%) sam-
ples were set aside as a holdout test set partition disjoint by patient identity. We used each individ-

ual HbAlc measurement to construct an associated feature vector from that patient’s data collected
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Table 4.1: PMBB outpatient dataset characteristics. To reduce the effects of selection bias, all
patients presenting to the University of Pennsylvania Health System were given the opportunity to
enroll in the PMBB so as to best capture the population of patients seeking medical care and avoid
overrepresentation of healthy patients as in traditional office visit patient recruitment strategies.
However, the PMBB is still affected by hesitancies of patient sub-populations in study enrollment
and the unique socioeconomic factors affecting different groups of patients. HTN: Hypertension.

Self-Reported Ethnicity Count (%)
White 720 (34.7)
Hispanic 40 (1.9)
Black 1248 (60.1)
Asian 36 (1.7)
Pacific Islander 6 (0.3)
Native American 5(0.2)
Other/Unknown 22 (1.1)

Self-Reported Gender Count (%)
Male 880 (42.4)
Female 1197 (57.6)

Age Decade Count (%)
20-29 31 (1.5)
30-39 89 (4.3)
40-49 362 (17.4)
50-59 593 (28.6)
60-69 680 (32.7)
70-79 299 (14.4)
80-89 23 (1.1)

Blood Pressure Count (%)
Normal (SBP < 120 mmHg and DBP < 80 mmHg) 421 (20.2)
Elevated (120 < SBP < 130 mmHg and DBP < 80 mmHg) 398 (19.2)
Stage 1 HTN (130 < SBP < 140 mmHg or 80 < DBP < 90 mmHg) 652 (31.4)
Stage 2 HTN (SBP > 140 mmHg or DBP > 90 mmHg) 606 (29.2)

BMI Count (%)
Underweight or Healthy Weight (BMI < 25.0) 275 (13.2)
Overweight (25.0 < BMI < 30.0) 443 (21.3)
Class 1 Obesity (30.0 < BMI < 35.0) 556 (26.8)
Class 2 Obesity (35.0 < BMI < 40.0) 389 (18.7)
Class 3 Obesity (BMI > 40.0) 414 (20.0)

HbA1lc Count (%)
Not Diabetic (HbAlc < 6.5% Alc) 918 (44.2)
Diabetic (HbAlc > 6.5% Alc) 1159 (55.8)

CT Abdomen and Pelvis Enhancement Count (%)
With Contrast 1570 (75.6)
Without Contrast 507 (24.4)

Image Derived Phenotypes (IDPs) Statistics Mean + SD
Spleen CT Attenuation (HU) 36.2 £ 16.7
Liver CT Attenuation (HU) 42.8 £20.2
Subcutaneous Fat Area (cm?) 321.3 £170.1
Visceral Fat Area (cm?) 172.4 £104.9

Total Count 2077
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closest in time to each HbAlc measurement. To quantify the temporal association between a given
patient’s measurements, we defined the daterange of an observation vector x as the maximum
length of time between any two features/imaging studies. The median daterange in our dataset

was 18 days.

Table 4.2: SynthAlc prediction results using different encoder models. 7- (resp., p-) prefixed
models are fed raw (resp., processed) inputs as outlined in Section 4.2.3. RMSE in units of % Alc.
For the SynthAlc encoder models, recall, precision, specificity, and accuracy metrics are reported
based on the traditional T2DM cutoff of 6.5% Alc. The Multi-Rule binary classifier is the current
risk stratification tool recommended by the American Diabetes Association (Bang et al., 2009).

SynthAlc Encoder RMSE PCC Recall Precision Specificity Accuracy

r~-OLS 1.67 0206 85.3 56.0 26.3 57.2

p-OLS 173 0.159 80.7 57.5 34.3 58.6
r-FI-Transformer 144 0517 87.6 63.4 55.9 70.7
p-FT-Transformer  1.51  0.441 835 61.4 54.1 67.8
~-NODE 1.60 0.378 85.6 55.0 38.7 60.6
p-NODE 157 0.649 773 59.5 54.1 64.9

r-GBDT 136 0567 87.2 66.4 51.5 70.2

p-GBDT 136 0591 77.1 724 67.7 72.6

Binary Classifier ~AUROC (%) Recall Precision Specificity Accuracy

Zero-Rule — 100 52.4 0.0 52.4
Multi-Rule 56.3 67.0 54.9 39.4 53.8
r-FI-Transformer 82.1 85.3 73.8 66.7 76.4
r-NODE 83.5 82.6 76.9 72.7 77.9

r-GBDT 83.1 87.2 76.6 70.7 79.3

4.3.2. SynthAlc Encoder Experimental Results

Our results suggest that the GBDT encoder predicted SynthAlc values closest to ground truth
HbAlc values, followed by both the NODE and FI-Transformer DNN models (Table 4.2). All the
learning-based architectures assessed outperformed the baseline OLS encoder. When comparing
SynthAlc outputs against the clinical HbAlc cutoff of 6.5% Alc for the diagnosis of diabetes, the
r-GBDT SynthAlc model demonstrated the highest sensitivity of the assessed models at 87.6% on
par with the best-performing binary classifier assessed. In terms of an opportunistic screening
modality for T2DM, a high sensitivity ensures that a large proportion of patients with diabetes

can be identified for additional lab-based diagnostic work-up with their primary care physicians.
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Although the accuracy of SynthAlc encoders was lower than the corresponding binary classifier
models assessed, this may be partially explained by the fact that the latter’s threshold value for
classification was empirically tuned to maximize the model’s accuracy. In contrast, our SynthAlc
encoders used the fixed clinical HbAlc cutoff of 6.5% Alc for diabetes classification. When compar-

ing r- and p- type SynthAlc models, we did not observe a consistently superior data representation.

To further interrogate our SynthAlc encoders, we investigated whether model performance varied
as a function of demographic features. Defining the difference between the model prediction and
ground truth HbAlc values as a proxy for model performance, all SynthAlc encoders showed no

statistically significant difference in performance when stratified by gender or BMI (Fig. 4.3).
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Figure 4.3: Assessing for algorithmic bias in SynthA1lc encoders. We plotted the 95% confidence
interval of the mean difference between the SynthAlc model output and ground truth HbAlc as
a function of self-reported (a) gender and (b) BMI category. p values comparing the differences
in SynthAlc model performance when stratified by gender (two-sample ¢-test) and BMI category
(one-way ANOVA) are shown.
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4.3.3. Ablation Studies: Relative Importance of CDPs and IDPs

Until now, prior T2DM classifiers have used only blood lab measurements and physical examina-
tion data to predict T2DM. In contrast, our models presented herein are the first to incorporate IDPs
as input model features for the task of diabetes risk stratification. To better understand the benefit
and value-add of using IDPs in conjunction with CDPs, we evaluated classifier performance on
models trained using either only CDPs or only IDPs and compared them to corresponding models
trained using both input types. Our results suggest that while classifier models trained only on
CDPs generally outperform those trained only on IDPs, the best performance is achieved when
combining CDPs and IDPs together (Table 4.3). This further validates the clinical utility of IDPs

for patient diagnosis and disease risk stratification proposed by MacLean et al. (2021).

Table 4.3: Patient feature ablation study. We evaluate model performance as a function of whether
clinically derived phenotypes (CDPs), image-derived phenotypes (IDPs), or both were used as
input into the SynthAlc predictive model.

r-NODE Recall Precision Specificity —Accuracy

CDPsOnly 77.1 73.7 69.7 73.5
IDPsOnly 734 76.9 75.8 74.5
CDPs + IDPs  82.6 76.9 72.7 779

r-FT-Transformer Recall Precision Specificity —Accuracy

CDPsOnly  78.0 76.6 73.7 759
IDPsOnly  71.6 60.5 48.5 60.6
CDPs + IDPs  85.3 73.8 66.7 76.4

r-GBDT Recall Precision Specificity —Accuracy

CDPsOnly  80.7 68.6 59.6 70.7
IDPsOnly  73.4 75.5 73.7 73.6
CDPs + IDPs  87.2 76.6 70.7 79.3

4.3.4. Characterizing Out-of-Domain Model Performance

As our metric M decreases across the three evaluated models, the RMSE in SynthAlc prediction
decreases and the PCC increases, corresponding to better predictive performance on the OOD Iraqi
Medical Center Dataset (Table 4.4). This supports our initial hypothesis that smoother models may
generalize better to unseen datasets. We also noted larger RMSE values using the Iraqi Medical

Center Dataset when compared to the PMBB outpatient test dataset results from Table 4.2.
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Table 4.4: SynthAlc model sensitivity and out-of-distribution (OOD) generalization results.
Smoothness metric values M were evaluated on the PMBB outpatient dataset. r-type models could
not be evaluated on the Iraqi dataset because IDPs and medical imaging data were not available.

Iraqi Dataset PMBB Inpatient
SynthAlc Encoder M  RMSE (% Alc) PCC RMSE (% Alc) PCC
p’-/r- NODE 1.43 3.62 /) — 0.154 / — 1.76 / 1.23 0.512 / 0.795
p’-/r- FT-Transformer 1.07 3.04 | — 0.246 /| — 1.90 / 1.58 0.331/0.617
p’-/r-GBDT 3.28 6.25 | — 0.021 / — 1.54 /1.12 0.674 / 0.823

Interestingly, we found that this relationship did not hold when considering the PMBB inpatient
dataset; in fact, model predictive performance was inversely correlated with global smoothness.
This suggested that the PMBB inpatient and outpatient dataset distributions were more similar
than initially predicted. To validate this hypothesis, we computed the Kullback-Leibler (KL) di-
vergence between each of the test dataset distributions and the training dataset distribution with
respect to the features available in all datasets: ethnicity, gender, age, BMI, and HbAlc. We as-
sumed the PMBB-derived outpatient training dataset was sampled from a distribution Q and each
of the PMBB outpatient test, PMBB inpatient, and Iraqi medical center datasets were sampled from
Poutpatient, Plnpatient, and Prragi, respectively. The greatest KL divergence was between the Iraqi
medical center and training dataset distributions, as expected (Dg, [PIraquQ] = 31.2). Despite
the fact that our training set included outpatient data alone, we found the KL divergence between
the inpatient test and training datasets (D 1[Pmpatient||Q] = 0.227) was lower than that between
the outpatient test and training dataset (Dx[Poutpatient||Q] = 1.84). To further characterize the
teature distributions within our datasets, we analyzed the pairwise relationships between BMI,
age, and HbAlc. Individual feature distributions were statistically significant between either of
the PMBB datasets and the Iraqi Medical Center dataset (two-sample Kolmogorov-Smirnov (KS)
test; p < 0.0001 between [PMBB inpatient dataset, Iraqi Medical Center dataset] and [PMBB outpa-
tient dataset, Iraqi Medical Center dataset] pairs for individual age, HbAlc, and BMI quantitative
features), but not between the PMBB inpatient and outpatient datasets (two-sample KS test; age:
p = 0.315, HbAlc: p = 0.463, BMI: p = 0.345). These results help explain our initial findings

regarding the relationship between M and model generalization.
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4.4. Conclusion

Our work highlights the value of using CT-derived IDPs and CDPs for opportunistic screening of
T2DM. We show that tabular learning architectures can act as novel SynthAlc encoders to predict
HbA1lc measurements noninvasively. Furthermore, we demonstrate that model manifold smooth-
ness may be correlated with prediction performance on previously unseen data sampled from
out-of-domain patient populations, although additional validation studies on separate tasks are
needed. Ultimately, we hope that our proposed work may be used for opportunistic screening of
type 2 diabetes—our proposed SynthAlc methodology will by no means replace existing diagnos-
tic laboratory workups, but rather identify those at-risk patients who should consider consulting

their physician for downstream clinical evaluation in an efficient and automated manner.

A few important limitations of our method warrant discussion. First, the mapping from the inter-
pretable features (i.e. CDPs and IDPs) to the final SynthAlc prediction is modeled using a non-
linear multilayer perceptron (MLP) in our method. We chose this strategy to capture more complex
relationships between intermediate features and final predictions, and consistently yielded supe-
rior predictive performance across all evaluated datasets in our work. However, the non-linear
nature of the MLP obfuscates direct attribution of individual feature representations to the output
prediction, making the mapping less interpretable than alternative approaches (e.g., a linear map-
ping). Nevertheless, we argue that achieving strong, generalizable performance is more important
than interpretability for its own sake in our application. Second, the current implementation does
not explicitly address data missingness. For simplicity, we chose to exclude patients with any miss-
ing input features, although this strategy can potentially introduce systematic selection biases that
may limit the external validity of our findings. This is especially relevant for generalizing our
results to patient populations in resource-limited settings, where deriving image-derived pheno-
types may not always be computationally feasible. Future iterations of this work may incorporate
more principled imputation strategies or robust modeling techniques to better handle incomplete
data. Lastly, real-world clinical validation of our method remains an essential direction for future

work to assess the utility and generalizability of our method across diverse clinical settings.
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CHAPTER 5

ADVERSARIAL SUPERVISION IN OFFLINE MODEL-BASED OPTIMIZATION

The following chapter is based on the first-author work:

(Yao et al., 2024) Michael S Yao, Yimeng Zeng, Hamsa Bastani, Jacob R Gardner, James C Gee, and
Osbert Bastani. Generative adversarial model-based optimization via source critic regularization.

In Proc NeurIPS, 2024. doi: 10.48550/arXiv.2402.06532.

Iplanned and performed experiments, analyzed the experimental data, and drafted the manuscript

with input from all other authors.
5.1. Introduction

In the preceding chapters, we introduced a series of methods to build machine learning models
that are more robust to common instances of distribution shift in the real-world. While it would be
ideal for all current and future ML systems to adopt the algorithms we explored in this thesis, the
current state-of-the-art models deployed in real-world user pipelines are most commonly black-
box by design. Acknowledging this practical reality, a natural question arises: how can we prevent
the out-of-distribution evaluation of any arbitrary machine learning model ‘in-the-wild,” including

black-box models which may not have been originally designed with robustness in mind?

In general, this is a challenging problem to solve. For instance, consider the example problem
formulation shown in Figure 1.3. For a given function f : X — R mapping inputs from a domain X
to real-valued outputs, we might only be able to train a machine learning model fy : X — Rondata
spanning only a (potentially small) region of the entirety of the input domain. While the model
may agree with f well for inputs similar to members of the training dataset of fy at inference time,
there is no guarantee that the model’s end users will not leverage fy to make predictions for new
inputs that are wildly different from training examples. In these instances of model extrapolation, it
is challenging to provide any meaningful bound on the error of fy compared to the true function f.

If unrecognized, such prediction errors could have disastrous consequences in critical applications.
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In this chapter, we consider a single such critical application—namely, offline generative design.
To avoid instances of model extrapolation against fj in this setting, we propose a novel algorithm
GAMBO (Generative Adversarial Model-Based Optimization) that achieves state-of-the-art per-

formance across offline generative design problems spanning a wide variety of scientific domains.
5.2. Introduction to Generative Design

In many real-world tasks, we often seek to optimize the value of an objective function over some
search space of inputs X'. Such generative design optimization problems span across a wide vari-
ety of domains, including molecule and protein design (Guimaraes et al., 2017; Brown et al., 2019;
Maus et al., 2022), patient treatment effect estimation (Berrevoets et al., 2022), and resource alloca-
tion (Bastani et al., 2021). However, in many situations it may prove difficult or costly to estimate
the objective function for any arbitrary input configuration. Evaluating newly proposed molecules
requires expensive experimental laboratory setups, and testing multiple drug doses for a single pa-
tient can potentially be dangerous. In these scenarios, the allowable budget for objective function

queries is prohibitive, limiting the utility of out-of-the-box online policy optimization methods.

To overcome this limitation, recent work has investigated the utility of optimization methods in the
offline setting, where we are unable to query the objective function during the optimization process
and instead only have access to a set of prior observations of inputs and associated objective val-
ues; this problem can often be referred to as offline model-based optimization (MBO) (Trabucco et al.,
2021; Krishnamoorthy et al., 2023b). While one may naively attempt to learn a surrogate black-box
model from the prior observations that approximates the true oracle objective function, such mod-
els can suffer from overestimation errors, yielding falsely promising objective estimates for inputs
not contained in the offline dataset. As a result, offline optimization against the surrogate objective
may yield low-scoring candidate designs according to the true oracle objective function—a key

limitation of traditional policy optimization techniques in the offline setting.

To address this problem, we proposed a novel offline MBO algorithm (i.e., GAMBO) that lever-
ages source critic models to optimize a surrogate objective while simultaneously remaining in-

distribution when compared against a reference offline dataset. In this setting, an optimizer is re-
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warded for proposing optima that are “similar” to reference data points, thereby minimizing over-
estimation error and allowing for more robust oracle function optimization in the offline setting.
Inspired by recent work on generative adversarial networks (Goodfellow et al., 2014), we quan-
tify design similarity by proposing a novel method that regularizes a surrogate objective model
using a source critic actor, which we call adaptive source critic reqularization (aSCR). We show how
GAMBO and aSCR can be readily leveraged with common optimization methods, such as Bayesian
optimization (BO) and first-order methods. Our contributions are as follows: first, we propose a
novel approach for MBO that formulates the task as a constrained primal optimization problem,
and we show how this framework can be used to solve for the optimal tradeoff between naively
optimizing against the surrogate model and staying in-distribution relative to the offline dataset.
Second, we introduce a computationally tractable method—which we call adaptive source critic
regularization (aSCR)—to implement this framework with two popular optimization methods:
Bayesian optimization and gradient ascent. Finally, we show that compared to prior methods, our
proposed algorithm with Bayesian optimization empirically achieves the highest rank of 3.8 (sec-
ond best is 5.5) on top-1 design evaluation, and highest rank of 3.0 (second best is 4.6) on top-128

design evaluation across a variety of tasks spanning multiple scientific domains.

5.3. Background
5.3.1. Offline Model-Based Optimization

In many real-world domains, we often seek to optimize an oracle objective function f(x) over a
space of design candidates &’ to solve for x* = argmax__, f(x). Examples of such problems in-
clude optimizing certain desirable properties of molecules in molecular design (Guimaraes et al.,
2017; Brown et al., 2019; Maus et al., 2022), and estimating the optimal therapeutic intervention for
patient care in clinical medicine (Berrevoets et al., 2022). In practice, however, the true objective
function f may be costly to compute or even entirely unknown, making it difficult to query in op-
timizing f(x). Instead, it is often more feasible to obtain access to a reference labeled dataset of
observations from nature D,, = {(x1,¥1), ..., (Xn,yn)} where y; = f(x;). Optimization methods

may use a variety of different strategies to leverage D, in the offline setting (Krishnamoorthy et al.,
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2023b,a; Chen et al., 2022); one common approach used by Trabucco et al. (2021) and others is to

learn a regressor model fy parametrized by
0* = argming E(x, ,.)p, 1fo(xi) — il (5.1)

as a surrogate model for the true oracle objective f(x). Rather than querying the oracle f as in the

online setting, we can instead solve the related optimization problem

X" = argmax ., y fo(x) (5.2)

with the hope that optimizing fy will also lead to desirable oracle values of f as well. Solving (5.2)
is one instantiation of offline model-based optimization (MBO) for which a number of techniques

have been developed, such as gradient ascent and Bayesian optimization (BO).

Of note, it is difficult to guarantee the reliability of the model’s predictions for x ¢ D,, that are
almost certainly encountered in the optimization trajectory. Thus, naively optimizing the surrogate

objective fy can result in “optima” that are low-scoring according to the oracle objective f.
5.3.2. Optimization Over Latent Spaces

In certain cases, the search space X" for an optimization task may be discretized over a finite set
of structured inputs, such as amino acids for protein sequences or atomic building blocks for
molecules. However, many historical optimization algorithms do not generalize well to these set-
tings for a number of different reasons, such as the lack of gradients with respect to the input de-
signs to guide the optimization trajectory. Instead of directly optimizing over X, recent work lever-
ages deep variational autoencoders (VAEs) to first map the input space into a continuous, (often)
lower dimensional latent space Z and then performing optimization over Z instead (Tripp et al.,
2020; Deshwal and Doppa, 2021; Maus et al., 2022). A VAE is composed of (1) an encoder with pa-
rameters ¢ that learns a posterior distribution ¢4(z|x) forx € X, z € Z; and (2) a decoder with pa-

rameters ¢ that learns the conditional likelihood distribution p, (x|z) (Kingma and Welling, 2013).
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The encoder and decoder are co-trained to maximize the evidence lower bound (ELBO)

ELBO = E.y, [log py(x|2)] — Dk [44(2[x) || pvag(2)] (5.3)

where Dy is the Kullback-Leibler (KL) divergence and pyag(z) is the prior distribution. A com-
mon choice is to set pyag = N (0, I) (i.e., the standard normal distribution). Optimization can then
be performed over the continuous latent space Z of the VAE to propose ‘latent space designs’ that

can be readily decoded using the decoder ¢ back into the original input space.

One such optimization method over VAE latent spaces is Bayesian optimization (BO), a sample-
efficient framework for solving optimization problems (Mockus, 1982; Snoek et al., 2012). While
the utility of BO has primarily been explored for expensive-to-evaluate black-box functions in prior
literature, recent work has shown that BO also outperforms baseline optimization methods in of-
fline tasks involving models that are relatively inexpensive to evaluate, such as the neural network
surrogates used in model-based optimization (MBO). Multiple prior works have shown that BO
and related methods can outperform both gradient-based and stochastic evolutionary methods

(Eriksson et al., 2019; Maus et al., 2022; Hvarfner et al., 2024; Eriksson and Jankowiak, 2021).
5.4. A Framework for Generative Adversarial Optimization

In this section we describe our proposed framework for generative adversarial model-based op-
timization using adaptive source critic regularization (aSCR). Our method uses a source critic
model as in Lemma 1 to dynamically regularize the optimization objective to avoid extrapolation

against the proxy surrogate model fj in offline MBO.
5.4.1. Constrained Optimization Formulation

In offline generative optimization, we aim to optimize against a surrogate objective function fy. In
order to ensure that we are achieving reliable estimates of the true, unknown oracle objective, we
can add a regularization penalty to keep generated samples “similar” to those from the training

dataset of fg according to an adversarial source critic trained to discriminate between generated and
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offline samples. That is, in contrast to (5.2), aSCR considers a closely related constrained problem

minimize,cz — fy(2)
(5.4)
subjectto E.cp[c*(2)] —c*(2) <0

over some configuration space Z C R4, and where we define ¢* as a source critic model that max-
imizes E,cp[c*(2')] — E.cqlc*(2)] over all K-Lipschitz functions as in Lemma 1. We can think of
E,cp[c*(2')] — ¢*(2) as the contribution of a particular generated datum z to the overall p = 1
Wasserstein distance between the generated candidate ((Q) and reference (P) distributions of de-
signs. In practice, we model c* as a fully connected neural net. Intuitively, the imposed constraint
restricts the feasible search space to designs that score at least as in-distribution as the average sam-
ple in the offline dataset according to the source critic. Therefore, c* acts as an adversarial model
to regularize the optimization policy. Of note, our constraint in (5.4) may be highly non-convex,

and so it is often impractical to directly apply (5.4) to any arbitrary MBO policy.
5.4.2. Dual Formulation

To solve this implementation problem, we instead look to reformulate (5.4) in its dual space by

tirst considering the Lagrangian £ of our constrained problem:

L(z;A) = —fo(2) + X [Evep[c™ ()] — ¢*(2)] (5.5)

where A > 0 is the Lagrange multiplier associated with the constraint in (5.4). We can equiva-
lently think of X as a hyperparameter that controls the relative strength of the source critic-penalty
term: A = 0 equates to naively optimizing the surrogate objective, while A > 1 asymptotically
approaches a WGAN-like optimization policy. Minimizing £ thus minimizes a relative sum of — fy
and the Wasserstein distance contribution from any particular generated datum z with relative
weighting dictated by the hyperparameter A\. From duality, minimizing £ over z and simultane-

ously maximizing over A € R, is equivalent to the original constrained problem in (5.4).

The challenge now is in determining this optimal value of A: if A is too small, then the objective
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estimates may be unreliable; if A is too large, then the optimization trajectory may be unable to
adequately explore the input space. Prior work by Trabucco et al. (2021) has previously explored
the idea of formulating offline optimization problems as a similarly regularized Lagrangian (albeit
with a separate regularization constraint), although their method tunes a hyperparameter by hand.

In contrast, aSCR treats A as a dynamic parameter that adapts to the online optimization trajectory.
5.4.3. Computing the Lagrange Multiplier

Continuing with our dual formulation of (5.4), the Lagrange dual function g(\) is defined as g(\) =
inf,ern £ (2; A). The z = 2 that minimizes the Lagrangian in the definition of g is a function of .

To show this, we use the first-order condition that V,£ = 0 at z = Z. Per (5.5), we have
V.L(5A) = —V.fo(2) — AV.c*(2) = 0 (5.6)

In general, solving (5.6) for Z is computationally intractable—especially in high-dimensional prob-

lems. Instead, we can approximate Z by relaxing the condition in (5.6) according to

1
2(A) = argmin = || =V, fo(2) — AV.¢*(2)|*

5.7
zeR" 2 ( )

Our key insight is that although minimizing the loss term in (5.7) is not practical when the feasible
set is naively uniform over R", we can instead choose to focus our attention on latent space coor-
dinates with high associated probability according to the VAE prior distribution pyag(z). This is
because in optimization problems acting over the latent space of any variational autoencoder, the
majority of the encoded information content is embedded according to pyag(z) due to the Kullback-
Leibler (KL) divergence contribution to VAE training. Put simply, the encoder distribution g (2|x)
is trained so that Dxi.[ge(2]%)||pvar(2))] is optimized as a regularization term in (5.3). We argue
that it is thus sufficient enough to approximate Z(\) using a Monte Carlo sampling schema with

random samples Zy = (21, 22, ..., 2N) ~ pvaE(2):

50) ~ aremin - [|—=Vafo(2) — AV.c(2)]? (58)

ZN~pvag(2) 2
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We can now concretely write an approximation of the Lagrange dual problem of (5.4):

maximize g(A\) = —fg(2) + X [Eyep[c’ ()] — ¢*(2)] (5.9)
subjectto A >0 |

where £ is as in (5.8). Defining the surrogate variable « such that A = %, we rewrite (5.9) as

maximize — (1 —a)fs(2) + a [Eyeplc’(2))] — ¢*(2)]
(5.10)
subjectto 0<a <1

We discretize the search space for a to 200 evenly spaced points between 0 and 1 inclusive. From
weak duality, finding the optimal solution to (5.9) provides a lower bound on the optimal solution
to the primal problem in (5.4). Algorithm 1 can now be used to choose the optimal o (and hence

A) adaptively during offline optimization: we refer to our method as Adaptive SCR (aSCR).

Algorithm 1 Adaptive Source Critic Regularization (SCR)

Input: differentiable surrogate objective fy : R¢ — R, differentiable source critic ¢ : R? — R, reference
dataset D,, = {z; };Lzl, « step size Aq, search budget B, norm threshold 7
Sample candidates Z5 + {2;}2; ~ N(0,14)
Initialize o* < None and g* < —o0
for « in range(start = 0, end = 1, stepsize = Aca) do
2"« argmin_ o [|(1 — @)V fo(z:) + aVe(z)]]2
if ||(1 — @)V fo(2*) + aVe(z*)||2 > 7 then
continue // Discard « if best norm exceeds 7
end if
g+ —(1 = a)fo(=*) +a [Ep, [o(z)] — o(z")]
if g > ¢* then
o «<—aand g* g // Implements (5.10)
end if
end for
return o*

5.4.4. Overall Algorithm

Using Adaptive SCR, we now have a proposed method for dynamically computing o (and hence
the Lagrange multiplier \) of the constrained optimization problem in (5.4). Importantly, aSCR
can be integrated with any standard function optimization method by optimizing the Lagrangian

objective in (5.5) over the candidate design space as opposed to the original unconstrained objec-
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tive fs. We refer to this algorithm as Generative Adversarial Model-Based Optimization (GAMBO).
To evaluate aSCR empirically, we instantiate two flavors of GAMBO: (1) Generative Adversarial
Bayesian Optimization (GABO); and (2) Generative Adversarial Gradient Ascent (GAGA)—see

Algorithm 2 for additional details.

Algorithm 2 Generative Adversarial Model-Based Optimization (GAMBO)

Input: surrogate objective fy : X — R, offline dataset D,, = { z; _1, acquisition function a, iterative
sampling budget 7', sampling batch size b, number of generator steps per source critic training ngenerator,
oracle query budget k, batched acquisition function a® : X x R — &
AdaptiveSCR Input: « step size Aq, search budget B, norm threshold 7
Define: Differentiable source critic ¢ : R — R
Define: Lagrangian £(z;a) : RY x R — R per (5.5): L(z; ) = — fy(2) + 12 [Eornp, [c(2))] — ¢(2)]
Sample candidates Z! « {z}}*_, ~ SobolSequence
// Train the source critic per Lemma 1 to optimality:
¢4 argmax‘‘CHLSKI/Vl(Dm zZh = argmax| ., [E.wp, [c(z)] —E,oz1]c(2)]]
a < AdaptiveSCR(fy, ¢, D, Aa, B, T) /] Alg. (1)
Evaluate candidates ' < {y}}o_, = {—L(z};a)}b_,
if backbone optimizer is Bayesian Optimization (i.e., GABO) then
Place Gaussian Process (GP) prior on fy
end if
fortin2,3,...,7 do
if backbone optimizer is Bayesian Optimization (i.e., GABO) then
Update posterior on fy with D;_; = {(2™,y™)}- 1)
Compute acquisition function a® using fitted posterior
end if
Sample candidates Z* « {z!}’_, = a®(D;_1) (i.e., 4 gradient ascent steps for GAGA)
a < AdaptiveSCR(fy, ¢, Dy, Acr, B, T)
Evaluate samples V! « {y!}?_, = {-L(z};a)}0_,
if t mod ngenerator €quals 0 then
// Train the source critic per Lemma 1 to optimality:
¢ < argmax, < Wi(Dn, 2")
= argmax|| ., <x [E. op,[c(2)] — E,uze[e(2)]]
end if
end for
return the top &k samples from the T' x b observations
Dy = {(",y")}*_,},_, according to ;"

5.5. Experimental Methods

We implement GABO using a quasi-expected improvement (qEI) acquisition function, iterative
sampling budget of T = 32, sampling batch size of b = 64, and GAGA using a step size of n = 0.05,
T =128, and b = 16.

78



5.5.1. Datasets and Tasks

To evaluate our proposed algorithm, we focus on a set of eight tasks spanning multiple domains
with publicly available datasets in the field of offline model-based optimization. (1) The Branin
function is a well-known synthetic benchmark function where the task is to maximize the two-
dimensional Branin function f3. : [—5,10] x [0,15] — R (Branin, 1972). (2) The LogP task is
a well-studied optimization problem (Zhou et al., 2019; Chen et al., 2021; Flam-Shepherd et al.,
2022) where we search over candidate molecules to maximize the penalized water-octanol par-
tition coefficient (logP) score, which is an approximate measure of a molecule’s hydrophobicity
(Ertl and Schuffenhauer, 2009) that also rewards structures that can be synthesized easily and fea-
ture minimal ring structures. We use the publicly available Guacamol benchmarking dataset from

Brown et al. (2019) to implement this task.

Tasks (3) - (7) are derived from Design-Bench, a publicly available set of MBO benchmarking
tasks (Trabucco et al., 2022): (3) TF-Bind-8 aims to maximize the transcription factor binding effi-
ciency of an 8-base-pair DNA sequence (Barrera et al., 2016); (4) GFP the green fluorescence of a
237-amino-acid protein sequence (Brookes et al., 2019; Rao et al., 2019); (5) UTR the gene expres-
sion from a 50-base-pair 5'UTR DNA sequence (Sample et al., 2019; Angermueller et al., 2020a);
(6) ChEMBL the mean corpuscular hemoglobin concentration (MCHC) biological response of a
molecule using an offline dataset collected from the ChEMBL assay CHEMBL3885882 (Gaulton et al.,

2012); and (7) D’Kitty the morphological structure of the D’Kitty robot (Ahn et al., 2020).

Finally, (8) the Warfarin task uses the dataset of patients on warfarin medication from Consortium
(2009) to estimate the optimal dose of warfarin given clinical and pharmacogenetic patient data.
Of note, in contrast to tasks (1) - (7) and other traditional MBO tasks in prior work (Trabucco et al.,
2022), the Warfarin task is novel in that only a subset of the input design dimensions may be opti-
mized over (i.e., warfarin dose) while the others remain fixed as conditioning variables (i.e., patient

covariates). Such a task can therefore be thought of as conditional model-based optimization.
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5.5.2. Oracle Functions

All oracle functions for the tasks assessed are either exact functions or approximate oracles de-
veloped by domain experts. Specifically, the Branin and TF-Bind-8 tasks utilize exact oracles de-
scribed in detail by Branin (1972) and Barrera et al. (2016), respectively. The oracle for the Penal-
ized LogP task is an approximate oracle from Wildman and Crippen (1999) that is the same oracle
used by domain experts in the Guacamol benchmarking study (Brown et al., 2019). The GFP, UTR,
and ChEMBL tasks feature approximate oracles from Angermueller et al. (2020a), Snoek et al.
(2012), and Trabucco et al. (2022), respectively, that were trained on a larger, hidden datasets inac-
cessible to us for the respective tasks. The D’Kitty morphology task uses a MuJoCo (Todorov et al.,
2012) simulation environment and learned control policy from Trabucco et al. (2022) to evaluate
proposed designs. Finally, the Warfarin task uses a linear model (Consortium, 2009) to estimate a

patient’s optimal warfarin dose given their pharmacogenetic attributes.
5.5.3. Data Preprocessing

For the (1) Branin task, we sample 1000 points from the square input domain [—5, 10] x [0, 15] to
construct the offline dataset, and remove the top 20%-ile according to the oracle function to make
the task more challenging in line with prior work (Krishnamoorthy et al., 2023b). In this continu-
ous task (along with the D’Kitty and Warfarin tasks), we treat input designs as their own latent
space mappings, such that the VAE encoder and decoder for this task are both the identity function
with zero trainable parameters. The offline dataset of the (2) Penalized LogP task is the valida-
tion partition of the Guacamol dataset from Brown et al. (2019), which consists of 79,564 unique
molecules and their corresponding penalized LogP scores. The input molecules are represented as
SMILES strings (Weininger, 1988), which is a molecule representation format shown to frequently
yield invalid molecules in prior work (Krenn et al., 2020). Therefore, we encode the molecules

instead as SELFIES strings—an alternative molecule representation from Krenn et al. (2020).

The (3) TF-Bind-8, (4) GFP, and (5) UTR tasks are assessed as-released by Design-Bench from
Trabucco et al. (2022)—please refer to their work for task-specific descriptions. In the (6) ChREMBL

and (7) D’Kitty tasks, we normalize all objective values y in the offline dataset to § = (y —
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Ymin)/ (Ymax — Ymin) as done in prior work (Krishnamoorthy et al., 2023b), where 7 is the corre-
sponding normalized objective value and Ymin (Y¥max) is the minimum (maximum) observed ob-
jective value in the full, unobserved dataset. Because only the bottom 60%-ile (40%-ile) from the
full dataset is used in the available offline dataset for the ChEMBL (D’Kitty) task, the respective
maximum g values are less than 1.0 (Table 5.1). We also translate the original SMILES string rep-

resentations in the ChEMBL task into SELFIES strings (Krenn et al., 2020) as in the LogP task.

Finally, the (8) Warfarin task uses the dataset of pharmacogenetic patient covariates published by
Consortium (2009). We split the original dataset of 3,936 unique patient observations into training
(validation) partitions with 3,736 (200) datums. The patient attributes in the Warfarin dataset
consist of a combination of discrete and continuous values. All discrete attributes are one-hot
encoded into binarized dimensions, and continuous values are normalized to zero mean and unit
variance using the training dataset. Missing patient values were imputed following prior work
(Truda and Marais, 2021). We define the cost ¢(z|r) accrued by a patient with attributes z € R3?
as a function of the input dose z € R is c(z|z) = (2 — dopace(7))?, where doracle : R3? — R is the
domain-expert oracle warfarin dose estimator from Consortium (2009). The observed objective
values y associated with each of the training datums is calculated as y = [c¢(Z|x) — c(z|z)]/c(Z|2),
where 7 is the mean warfarin dose over the training dataset and z is the true dose given to the
patient. Using this constructed offline dataset, our task is then to assign optimal doses to the 200

validation patients to maximize y with no prior warfarin dosing observations.
5.5.4. Policy Optimization and Evaluation

For all experiments, the surrogate objective model fj is a fully connected net with two hidden layers
of size 2048 and LeakyReLU activations. fj takes as input a VAE-encoded latent space datum and
returns the predicted objective function value as output. The VAE encoder and decoder backbone

architectures vary by MBO task and are detailed in Table 5.1.

Following Goémez-Bombarelli et al. (2018) and Maus et al. (2022), we co-train the VAE and surro-
gate objective models together using an Adam optimizer (Kingma and Ba, 2014) with a learning

rate of 3 x 10~ for all tasks. For the optimization tasks over continuous design spaces (i.e., Branin,

81



Warfarin, and D’Kitty), we fix the VAE encoder and decoders as the identity functions, such that

the latent and input spaces are equivalent.

Table 5.1: MBO datasets and tasks. Implementation details for each of the eight MBO tasks as-
sessed in our work. *Denotes the life sciences-related discrete MBO tasks offered by the Design-
Bench benchmarking repository (Trabucco et al., 2022).

Property Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty =~ Warfarin
Dataset Size 800 79,564 32,898 5,000 140,000 441 10,004 200
Input Shape 2 108 8 237 50 32 56 1(33)
Vocabulary Size — 97 4 20 4 40 — —
VAE Backbone Identity Transformer ResNet ResNet ResNet  Transformer  Identity Identity
VAE Latent Shape 2 256 16 32 32 128 56 33
Oracle  Exact Linear Exact Transformer ResNet Random Forest  Exact Linear
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 £ 1.96

The source critic agent ¢ introduced in Lemma 5.4 is implemented as a fully connected net with
two hidden layers with sizes equal to four (one) times the number of input dimensions for the first
(second) layer. To constrain the Lipschitz norm of ¢ as in Lemma 1, we clamp the weights of the
model between [-0.01, 0.01] after each optimization step as done by Arjovsky et al. (2017). The
model is trained using gradient descent with a learning rate of 0.001 to maximize the Wasserstein

distance between the dataset and generated candidates in the VAE latent space.

During optimization, both GABO and GAGA alternate between sampling new designs and training
the source critic actor ¢(z) until there is no improvement to the Wasserstein distance 1; according
to c after 100 consecutive weight updates. We find that training c every ngenerator = 4 sampling

steps is a good choice across all tasks assessed, similar to prior work Arjovsky et al. (2017).

All MBO methods were evaluated using a fixed surrogate query budget of 2048. We focus on two
evaluation metrics: 100th percentile (1) top & = 1;and (2) top £ = 128 oracle score. The top k = 128
evaluation metric is commonly reported in prior offline MBO literature (Krishnamoorthy et al.,
2023b; Trabucco et al., 2021; Yu et al., 2021); the top k£ = 1 metric better accounts for the limited
oracle query budget of the real-world tasks in which offline MBO would be of use. In both settings,
an optimizer selects the top k£ design that minimize the Lagrangian function value in (5.5) from
the 2048 assessed designs to evaluate using the true oracle function, and the maximum score of

those k designs is reported across 10 random seeds.
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We evaluate both GABO and GAGA against a number of pre-existing baseline algorithms on one
internal cluster with 8 NVIDIA RTX A6000 GPUs. We include vanilla Bayesian Optimization (BO-
qEI) and gradient ascent (Grad.) in our evaluation to assess the utility of our proposed aSCR algo-
rithm. Furthermore, we evaluate limited-memory BFGS (L-BFGS) Liu and Nocedal (1989), CMA-
ES Hansen and Ostermeier (1996), and simulated annealing (Anneal) Kirkpatrick et al. (1983).
We also compare our method against TuRBO-qEI (Eriksson et al., 2019), COM (Trabucco et al.,
2021), RoMA (Yuetal., 2021), BDI (Chen et al., 2022), DDOM (Krishnamoorthy et al., 2023a),
BONET (Krishnamoorthy et al., 2023b), EXPT (Nguyen et al., 2023), BootGen (Kim et al., 2023),
and ROMO (Chen et al., 2023c). Of note, because BootGen is proposed by Kim et al. (2023) as
an optimization method specifically for biological sequence design, we only assess this baseline

method on the five relevant tasks in our evaluation suite.

Conditional MBO Tasks. To our knowledge, prior work in conditional model-based optimiza-
tion is limited, and so previously reported algorithms are not equipped to solve such tasks out-of-
the-box. Chen et al. (2023c) explore such tasks in their work, but primarily focus on conditional
tasks that are built by arbitrarily fixing certain design dimensions from unconstrained problems,
which are not representative of true conditional optimization problems in the real world. In our
work, we introduce the Warfarin task to assess methods on their ability to design an optimal thera-
peutic drug regiment conditioned on a fixed patient state and lab values. To assess existing methods
on this task, we implement conditional proxies of all baselines employing a first-order optimiza-
tion schema via partial gradient ascent to only update the warfarin dose dimension while leav-
ing the patient attribute conditional dimensions unchanged. Conditional BO-based methods are
implemented by fitting separate Gaussian processes for each patient. In conditional DDOM, we

exchange the algorithm’s diffusion model with a conditional diffusion model (Gu et al., 2023).

Of note, the BONET algorithm (Krishnamoorthy et al., 2023b) requires multiple observations for
any given patient to construct synthetic optimization trajectories. However, the key challenge in
conditional MBO is that each condition (i.e., patient) has no past observations (i.e., warfarin doses),

and instead relies on learning from offline datasets constructed from different permutations of
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condition values. As a result, we could not evaluate BONET on conditional MBO tasks.
5.6. Results

Scoring of one-shot optimization candidates is shown in Table 5.2. Across all eight assessed tasks
spanning a wide range of scientific domains, GABO with our aSCR algorithm achieved the best
average rank of 3.8 when compared to other existing methods (next best is 5.5). Furthermore,
GABO was able to propose top & = 1 candidate designs that outperform the best design in the
pre-existing offline dataset for 6 of the 8 tasks—greater than any of the other methods assessed. If a
larger oracle evaluation budget is available (i.e., £ = 128), GABO with aSCR performs even better,
achieving the best average rank of 3.0 (next best is 4.6). GABO is also the best algorithm on 3 of
the 8 tasks and second best on 2 tasks according to this evaluation metric. Altogether, our results

suggest that GABO is a promising method for proposing optimal design candidates in offline MBO.

Importantly, our aSCR algorithm improves upon both the naive BO-qEI and Grad. Ascent parent
optimizers assessed. GABO outperforms both baseline BO-based optimization methods in our
evaluation suite: BO (TuRBO) only achieves a rank of 8.8 (9.0) on the top k& = 1 evaluation metric
and a rank of 6.6 (7.4) on the top £ = 128 metric. Similarly, GAGA scores an average rank of 7.4
(7.6) on the top £ = 1 (k = 128) evaluation metric; by leveraging aSCR, GAGA outperforms its
base parent optimizer (Grad. Ascent), which only achieves an average rank of 9.0 and 11.0 on the
same two evaluation metrics, respectively. Our results show that using aSCR to adaptively penalize

the objective of two popular optimization methods can improve their offline performance.
5.6.1. Qualitative Evaluation: Penalized LogP Task

We evaluate GABO against naive BO-qEI for the LogP task by inspecting the three-dimensional
chemical structures of the top-scoring candidate molecules. As a general principle, molecules that
are associated with high Penalized LogP scores are hydrophobic with minimal ring structures and
therefore often feature long hydrocarbon backbones (Ertl and Schuffenhauer, 2009). In Figure 5.1,
we see that BO-qEI using the unconstrained surrogate objective generates a candidate molecule of
hydrogen and carbon atoms. However, the proposed candidate includes two rings in its structure,

resulting in a suboptimal oracle Penalized LogP score.
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Table 5.2: Constrained budget (k = 1) oracle evaluation. Each method proposes a single design
that is evaluated using the oracle function to report the final score (higher is better) across 10
random seeds reported as mean =+ standard deviation. D (best) reports the top oracle value in
the task dataset. Each of the MBO methods are ranked by their mean one-shot oracle score, and
the average rank (lower is better) across all eight tasks is reported in the final table column. Bold
(resp., Underlined) entries indicate the best (resp., second best) entry in the column. *Denotes the
MBO tasks from Trabucco et al. (2022).

Method Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin ~ Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -019+19%  —

Grad. -2451+813 -537+144 0429+0.023 3.18+0.88 682+021 -195+0.00 0.57+019 0.86+1.09 9.0
L-BFGS  -29.6 £0.0 3824326 0527+0140 351+070 648+120 -1954+0.00 0.31£0.00 0.73+1.83 8.5
CMA-ES -8.6+3.6 504+683 0438+0.131 143+0.00 6.39+0.11 -1954+0.00 031+£0.00 -25.0+150 10.6
Anneal 96+15 876+0.15 0.807£0.094 3.64+0.03 5014031 -1954+0.00 0.55+0.18 0.91+0.08 6.8
BO -11.0+78 -52.5+88.8 0.586+0.193 143+0.00 565+130 059+010 0.61+0.15 0.16=+1.67 8.8
TuRBO  -21.0+5.1 -451+93.8 0.564+£0194 143+0.00 653+119 0.65+0.00 044+0.18 0.05+0.11 9.0
BONET  -26.1+0.9 10.8 £033 0.282+£0.000 3.744+0.00 9.12£0.07 055+0.13 0.78+£0.00 —
DDOM  -6677 +£ 6360 -423+128 0.460+0.030 1.43+0.00 556+0.02 054+015 051+020 -0324+040 11.1
COM -3099+326  30.8+19.5 0439+0.000 3.62+0.00 6.65+043 0634001 0.90+0.02 0.72+0.97 55
RoMA  -32.7+184 637 +139 0433 £0.040 337+0.27 6.66+098 050+£014 030£027 -070£0.02 94
BDI  -1050 £ 0.0 -020+0.00 0.311+0.000 3.26+0.82 5.61+0.00 0484000 0.67+0.00 -248+233 108
ExPT -572+£386 -159+241 0571+0.076 143+£0.00 6.77+138 0.56=+0.06 066+020 -346+614 9.1
BootGen — -13.0+£151 0.942+£0.022 3.104+0.73 830+093 0.59+0.07 — — 6.2
ROMO -2614+7399 -205+19.2 0382+0203 355+0.13 573+142 0.65+0.00 0.64+027 -071+£210 9.6

GAGA 29422 -68.6 £109.8 0.571+0.120 3.74+0.00 589+142 -195+0.00 0.89+0.00 0.01+0.14 7.4
GABO -2.6 £ 1.1 21.34+332 0570+£0.131 3.60+040 751+039 0.60+£0.07 071£0.01 0.60+1.80 3.8

Table 5.3: Relaxed budget (k = 128) oracle evaluation. Each method now proposes 128 designs
that are evaluated using the oracle function, and the maximum score out of these 128 designs is
reported below (averaged across 10 random seeds and reported as mean =+ standard deviation).
D (best) reports the top oracle value in the task dataset. Each of the MBO methods are ranked by
their mean k = 128-shot oracle score, and the average rank (lower is better) across all eight tasks is
reported in the final table column. Bold (Underlined) entries indicate the best (second best) entry
in the column. *Denotes the life sciences-related tasks from Design-Bench (Trabucco et al., 2022).

Method Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin  Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -019+19%  —

Grad. -1153+208 -514+1.70 0.9774+0.025 349+0.69 7384015 -195+0.00 0.87+0.02 0.86+1.08 11.0
L-BFGS -4.0£0.0 428+9.44 0633+0.140 3.744+0.00 7514+039 -195+0.00 031+0.00 075+1.67 101
CMA-ES -43+17 476 +£546 0810+0235 3.74+0.00 740+032 -195+0.00 0.74+0.00 -8.62+63.8 9.8
Anneal 74428 11.34+0.00 0.890+0.035 3.72+0.00 7964022 -1.95+0.00 0.8840.00 0.97+0.08 9.3
BO -0.4£0.0 1353 +£16.0 0942 +0.025 226+1.03 826+0.09 0.67+0.00 0.724+0.00 0.93+0.11 6.6
TuRBO -0.7+£04 59.7+513 0.895+£0.049 1.89+£092 826+0.11 0674+0.01 072+0.00 0.99+0.01 74
BONET  -26.0+0.9 11.7+038 0951+0.035 3.74+0.00 9.13+0.08 0.67+0.01 0.95+0.01 — 5.6
DDOM  -184+298 -216+0.60 0.936+0.051 144+0.00 830£033 0.66+001 0.89+0.01 1.00+0.00 8.4
COM -1981 +£2245 42.0+169 0.902+0.056 3.62+0.00 8.18+0.00 0.64+0.01 095+0.02 0.77+0.86 8.5
RoMA -4.8 £3.0 10.8+0.78 0.760 £0.113 3.74+0.00 8.12+0.09 0.69+0.03 1.02+0.04 0.67+0.05 7.8
BDI  -65.0£51.3 1.52+579 0.735+£0.086 3.61+0.05 631+£000 0504012 094+001 -507+21.0 11.8
ExPT -1.7+£1.0 -6.48 £ 458 0927 +0.095 3.74+0.00 8.13+0.09 0.68+0.04 097+0.01 0.96+0.05 6.5
BootGen — 8.10+3.31 0.979 +£0.002 3.74+0.00 10.5+0.95 0.68+ 0.00 — — 4.6
ROMO 2367 £7875 -6.05+145 0.572+0.202 3.67+0.03 694+107 0.65+0.00 090+0.02 076+191 121

GAGA -1.0+0.2 141+250 0.722+0.091 3.74+0.00 7.98+0.36 -1.95+£0.00 0.90+0.01 0.95%+0.07 7.6
GABO -05+£0.1 1221 +206 0.954+0.025 3.74+0.00 836+0.08 0.70+0.01 0.724+0.00 1.00=+0.03 3.0
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We hypothesize that this may be due to a lack of ring-containing example molecules in the offline
dataset, as only 6.7% (2.7%) of observed molecules contain at least one (two) carbon ring(s). As a
result, the surrogate objective model estimator returns more inaccurate Penalized LogP estimates
for input ring-containing structures (surrogate model root mean squared error (RMSE) = 25.5 for
offline dataset molecules with at least 2 rings; RMSE = 16.5 for those with at least 1 ring; and RMSE
= 4.6 for those with at least 0 rings), leading to sub-par BO-qEI optimization performance as the
unconstrained algorithm extrapolates against the surrogate to find “optimal” molecules that are
out-of-distribution. In contrast, GABO generates a candidate molecule with a long hydrocarbon
backbone and no rings, resulting in a penalized logP score of 22.1—greater than the best observed

value in the offline dataset for the task.

Offline Dataset BO-qEI
7, o
Penalized 113 -11.4
LogP Score

Structure

CCCCCCCCCCCCSCCCCCCCCCCCCl  C1(CC(C(C2)=CC1C3 CCCC(C)CC(C)CCCCCCeeeceee
fb%( CCCCCCCCCCCCCCCCCC (=0)N(CC)~ C€=4C3C5)C67C5=4)~ CCC(C)C1C(C)C(C)CCCCC(C)CCCCCC(CCC)CCCCCC(CC)-

CCCCCCCCCCC(=0)NCC(=0)0 c6(C)CT2 (C)C(CC)CC(C(C)YC(C)CC)C(C)C(CC)C(C)C(CC)Cx
SMILES (CC=CCB)CBC (CC)C(C)CCC(C)c(c)ceec

Figure 5.1: Penalized LogP score maximization sample candidate designs. (Left) The molecule
with the highest penalized LogP score of 11.3 in the offline dataset. Here, we show the 100th
percentile candidate molecules according to the surrogate objective generated from (Middle)
vanilla BO-qEI and (Right) GABO. Teal- (white-) colored atoms are carbon (hydrogen). Non-
hydrocarbon atoms are underlined in the SMILES (Weininger, 1988) string representations.

5.6.2. Ablation Studies

Adaptive SCR Algorithm Ablation. Taking inspiration from (Trabucco et al., 2021), it is possible
to utilize our SCR algorithm in GABO without dynamically computing o (and hence the Lagrange
multiplier \). To better characterize the utility of aSCR, we ablate Algorithm 1 by treating A instead
as a hand-tunable constant hyperparameter, and test our method using different values of A =
a/(1—a) (Table 5.4). Setting o = 0 (i.e., A = 0) corresponds to naive BO against the unconstrained

surrogate model, while o = 1 (i.e.,, A — 00) is equivalent to a WGAN-like policy. Evaluating
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constant values of a ranging from 0 to 1, we find that there is no consistently optimal constant
value for all eight optimization tasks. In contrast, our method achieves an average rank of 1.9 (2.4)
on the top-1 (top-128) evaluation metric, and is one of the top two methods when compared to the
ablations for at least five of the eight tasks. These results suggest that the ‘adaptive’ nature of aSCR

is an important component in solving the constrained optimization problem in (5.4).

Table 5.4: GABO Adaptive SCR ablation study. One-shot (k = 1) and few-shot (k = 128) oracle
evaluations averaged across 10 random seeds reported as mean =+ standard deviation. D (best)
reports the top oracle value in the task dataset.

Top-1 Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin ~ Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -019+19% —

a=00 -11.0£78 -525+888 0586+0.193 143+£0.00 565+130 059+0.10 0.61=+0.15 0.16£1.67 45
a=02 -98+39 -4394+60.7 0535+0.110 143+000 4.69+144 063+0.03 0.61+015 0.16+1.79 3.9
a=05 -79+66 -839+1663 0.601+0.212 143+0.00 5694151 0.63+0.04 0.66+0.12 0.16+1.79 3.6
a=08 52431 -433+170.0 0.654+0.218 1.66+0.69 6.49+120 0.64+0.02 0.71+0.01 0.16+1.80 24
a=10 -995+612 -468+1143 0454+0.120 3.74+0.01 526+235 052+0.16 0.62+0.15 -9.04+573 4.8

aSCR -26+1.1 21.3+33.2 0570+0.131 3.60+0.40 7.51+0.39 0.60£007 0.71+£0.01 0.60+1.80 1.9

Top-128 Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin  Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -019+19%  —

a=00 -04%0.0 1353 £16.0 0.942+0.025 2264+1.03 826+0.09 0.67+0.00 0724000 093+0.11 43
a=02 -04+01 121.8+£20.6 0.925+0.029 3.01+1.04 820+0.10 0.67=£0.01 0.72+0.00 1.00=+0.00 4.8
a=05 -04+0.0 127.7+£231 0.9444+0.040 3494+0.69 829+0.08 0.67+001 072+£0.00 1.00+0.00 29

a=08 -04+0.0 104.5+31.8 0933 £0.036 3.744+0.00 838+0.11 0.67+0.02 0.724+0.00 1.00+ 0.00 34
a=10 -22+14 1423 £241 0906 £0.061 3.74+0.00 8.54+0.08 0.68+0.01 0.72+0.00 0.99+0.04 3.4

aSCR  -05+0.1 122.1 +£20.6 0.954 +0.025 3.74+0.00 8.36+0.08 0.70£0.01 0.72+0.00 1.00 =+ 0.03 24

Of note, the top designs found across different constant values of o can be very similar for certain
tasks. This reflects the inherent challenge in developing task-agnostic methods for policy regular-
ization—if the magnitudes of the unconstrained objective and regularization function vastly differ,
then constant values of & may over- or under- constrain the objective. Adaptive SCR overcomes

this problem by dynamically setting o as an implicit function of prior observations.

Oracle Query Budget Ablation. We ablate the number of allowed k-shot oracle calls in the Pe-
nalized LogP task (Fig. 5.2). While the majority of first-order optimization methods we evaluated
are able to reach local optima rapidly, the proposed designs from such approaches are suboptimal
compared to those from GABO (and GAGA) with Adaptive SCR as the oracle query budget size
increases. Separately, comparing the curves for GABO and vanilla BO-qEI, we see that GABO with

Adaptive SCR is able to propose consistently superior design candidates in the small query budget
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regime often encountered in real-world settings. This is due to the fact that GABO regularizes the
surrogate function estimates such that the proposed candidates are both high-scoring according
to the surrogate objective and relatively in-distribution. Our results demonstrate that especially
for real-world tasks like molecule design with complex objective function landscapes, methods
such as GABO with Adaptive SCR are able to explore diverse, high-performing design candidates

effectively even in the setting of small oracle query budgets.

» 1501
—
é Offline MBO Method
n, o= Grad.
& 100+ —0— L-BFGS
i =¥ : CMA-ES
8 “#+ BO-gEI
T 504 —<&= TuRBO-qEI
& =»— BONET
2 = : DDOM
g - @ COM
S 01 RoMA
L =#=BDI
§ =& : BootGen
8 501 ® GAGA
Z =€ GABO
M

0 500 1000 1500 2000

Oracle Query Budget

Figure 5.2: 100th percentile oracle scores versus k-shot oracle budget size. We plot the 100th per-
centile oracle penalized LogP score averaged across 10 random seeds as a function of the number
of allowed oracle calls k.

GP Initialization Ablation. Per Algorithm 2, GABO is based on the BO-qEI baseline optimiza-
tion policy, which involves initializing the gaussian process (GP) to approximate the offline sur-
rogate model. Consistent with prior work (Eriksson et al., 2019; Maus et al., 2022), we initialize
the GP using the pseudo-random Sobol sequence (Sobol, 1967) at the beginning of the optimiza-
tion procedure. However, an alternative approach is to instead initialize the GP using the top ninit
samples from the offline dataset. In particular, this strategy is already employed in both related
work describing the baseline first-order optimization methods assessed herein, with the idea that
better designs can be generated by initializing from better designs. We compare these two GP

initialization strategies in Table 5.5.

Interestingly, our results show that initializing the GABO GP from the Sobol sequence consistently
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outperforms initialization from the top candidates in offline dataset. We hypothesize that this may
be due to the fact that top-scoring candidates likely lie in similar regions of the input space, which
significantly alters the ability of the optimizer to explore other regions of the design space over
the course of the optimization process. Future work may help better interrogate the relationship

between GP initialization and offline optimization, which is outside the scope of this work.

Table 5.5: GABO GP initialization ablation study. We investigate the effect of initializing the
Gaussian process (GP) in GABO using the best nin;t points from the offline dataset (i.e., Best ini-
tialization strategy) versus our method in Algorithm 2 where the GP is initialized using the first
Ninit points from the Sobol sequence from (Sobol, 1967) (i.e., Sobol initialization strategy). In
each evaluation setting, we rank all 2,048 proposed designs according to the penalized surrogate
forward model in (5.5) and evaluate the top k designs using the oracle function, reporting the max-
imum out of the k oracle values. In the suboptimal evaluation setting, we report the oracle score of
the single 90th percentile design according to the penalized surrogate ranking. Bold entries indi-
cate the best entry in the column for the particular optimizer and evaluation metric. *Denotes the
life sciences MBO tasks offered by Design-Bench (Trabucco et al., 2022).

Strategy Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 £ 1.96

Constrained Budget (k¥ = 1) Oracle Evaluation

Best -3.6+4.1 140+ 184 0504 +0.117 297 +1.02 536+124 0.61+0.00 050+019 -297+9.03
Sobol -2.6 +1.1 21.3+33.2 0.570+0.131 3.60+040 7.51+039 060+0.07 0.71+0.01 0.60+1.80

Relaxed Budget (k = 128) Oracle Evaluation

Best -05+0.0 11894195 0918+0.034 374+0.00 8.37+0.09 0.66+001 0.87+0.05 0.99+0.09
Sobol -05+0.1 1221+20.6 0.954+0.025 3.74+0.00 836+0.08 0.70+0.01 0.72+0.00 1.00+ 0.03

Constrained Budget (¥ = 1) Suboptimal (90%-ile) Oracle Evaluation

Best -11.8+6.4 -859+124 0382+0.106 3.45+0.77 6.28+170 0.60+0.03 0.64+0.23 -0.65+3.97
Sobol -12.7+10.0 -122+46.1 0.467 £0.066 3.56 +1.66 6.12+122 0.61+0.08 0.57+0.17 0.02+5.77

Surrogate Model Ablation. In Algorithm 2, we leverage a surrogate forward model fy in model-
based optimization and a separate GP to acquire samples in the Bayesian optimization framework.
However, it may be possible to use the GP directly as the surrogate forward model. Our results in
Table 5.6 suggest that this is ot an effective strategy with which to use GABO—using even a simple
neural-network as the surrogate function (as done in our approach in Algorithm 2) outperforms
the alternative GP-based approach in six of the eight tasks in the top-1 evaluation setting, and
is non-inferior to the alternative GP-based approach in all eight tasks in the top-128 evaluation
setting. These results suggest that using a more complex neural-network surrogate function for

GABO leads to better optimization results than directly using the GP as the surrogate.
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Table 5.6: GABO neural network surrogate ablation study. Instead of using a neural network
(NN) as our surrogate forward model, we explore if the Gaussian process (GP) employed by the
parent BO optimizer can directly be used as the surrogate model in GABO’s framework. In each
evaluation setting, we rank all 2,048 proposed designs according to the penalized surrogate for-
ward model in (5.5) and evaluate the top k£ designs using the oracle function, reporting the maxi-
mum out of the k oracle values. In the suboptimal evaluation setting, we report the oracle score of
the single 90th percentile design according to the penalized surrogate ranking. Bold entries indi-
cate the best entry in the column for the particular optimizer and evaluation metric. *Denotes the
life sciences MBO tasks offered by Design-Bench (Trabucco et al., 2022).

Surrogate Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 £ 1.96

Constrained Budget (k = 1) Oracle Evaluation

GP -3744+44 -579+1592 0.576+0.058 351+0.69 6.84+124 0.65+0.01 042+017 -0.28+2.13
NN -26+11 21.3£33.2 0570£0.131 3.60+0.40 7.51+0.39 0.60=+0.07 0.71+0.01 0.60+1.80

Relaxed Budget (k = 128) Oracle Evaluation

GP -15+05 1199+20.1 0.755+£0.071 3.74+0.00 8.34+0.07 0.67=£001 072£0.00 -027+2.13
NN -05+0.1 122.1 +£20.6 0.954+0.025 3.74+0.00 8.36+0.08 0.70+0.01 0.724+0.00 1.00 £ 0.03

Constrained Budget (k = 1) Suboptimal (90%-ile) Oracle Evaluation

GP -101+10.6 -51.5+1088 0.562+0.091 2.62+113 6.54+156 0.65+0.00 0.50+019 -0.27£2.13
NN -127+10.0 -122+461 0467 £0.066 3.56+1.66 6.12+122 0.61+0.08 057+017 0.02+5.77

5.7. Conclusion

We propose adaptive source critic regularization (aSCR) to solve the problem of off-distribution
objective evaluation in offline MBO. When leveraged with vanilla Bayesian optimization, aSCR
outperforms baseline methods to achieve an average rank of 3.8 (3.0) in one-shot £ = 1 (few-shot

k = 128) oracle evaluation, and most consistently proposes designs better than the offline dataset.

One important limitation of aSCR is that our algorithm requires preexisting knowledge of the prior
distribution over the input space. While the tasks considered in this chapter are amenable to the im-
posed latent space priors, further work is needed to adapt aSCR to arbitrary configuration spaces.
Future work may also extend aSCR to improve parent optimization methods more sophisticated
than BO-qEI and Gradient Ascent. Finally, recent domain-specific foundation models (Lin et al.,
2023; Ohana et al., 2025; Nguyen et al., 2024; Zeni et al., 2025) may also give rise to more sophisti-

cated, accurate surrogate models that can be leveraged with GAMBO in future work.
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CHAPTER 6

OBTAINING DIVERSE AND HIGH-QUALITY DESIGNS IN OFFLINE OPTIMIZATION

Portions of this chapter are adapted from the following published first-author manuscript:

(Yao et al., 2025b) Michael S Yao, James C Gee, and Osbert Bastani. Diversity by design: Leverag-
ing distribution matching for offline model-based optimization. Proc ICML, 2025. doi: 10.48550/a-
rXiv.2501.18768

I helped conceive the study, planned and performed experiments, analyzed the experimental data,

and drafted the manuscript with input from all other authors.
6.0.1. Introduction

In the previous chapter, we considered the problem of offline optimization in generative design
where our goal was to propose new materials, chemicals, proteins, and other scientific designs
that optimize a desirable property of interest given only access to a static, offline dataset. Our ex-
periments demonstrated that adversarial feedback via source critic networks could be a powerful
tool to improve the quality of designs proposed by offline model-based optimization (MBO) frame-
works; however, these same experiments also simultaneously revealed an important limitation of

existing work in offline MBO: how can we achieve designs that are high-quality and diverse?

Prior work in offline MBO (Yu et al., 2021; Trabucco et al., 2021; Fu and Levine, 2021; Chen et al.,
2022; Krishnamoorthy et al., 2023b,a; Nguyen et al., 2023; Kim et al., 2023) has almost exclusively
focused on developing algorithms that propose high-quality candidate designs. A secondary met-
ric often overlooked in these settings is candidate diversity (Jain et al., 2022; Kim et al., 2023): it is
often ideal to include a diverse array of designs in the final samples proposed by an optimization
procedure (Fig. 1.4). Different designs may achieve promising oracle rewards in different ways,
and many real-world optimization tasks seek to capture as many of these ‘modes of goodness’ as
possible (Mullis et al., 2019; Jain et al., 2022). Furthermore, there may be secondary optimization

objective(s) (e.g., manufacturing cost or drug toxicity) that are better explored and evaluated in a
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diverse sample set. In these settings, it may be more desirable to sample slightly suboptimal de-

signs in addition to the most optimal design to achieve a greater diversity of proposed candidates.

To this end, we introduce Diversity in Adversarial Model-based Optimization (DynAMO) as a
novel approach to explicitly control the trade-off between the reward-optimality and diversity of a
proposed batch of designs in offline MBO. To motivate our contributions, we show how naive opti-
mization algorithms provably suffer from poor candidate diversity. To overcome this limitation, we
will first propose a modified optimization objective in the offline setting that encourages discovery
of designs that encapsulate the diversity of samples in the offline dataset—an approach inspired
by recent advancements in imitation learning and offline reinforcement learning (Ho and Ermon,
2016; Kostrikov et al., 2020; Ke et al., 2021; Ma et al., 2022; Rafailov et al., 2023; Deka et al., 2023;
Huang et al., 2024b). We will then derive DynAMO as a provably optimal solution to our modified
optimization objective. Finally, we will empirically demonstrate how DynAMO can be used with
a wide variety of different offline optimization methods to propose promising design candidates

comparable to the state-of-the-art, while also achieving significantly better candidate diversity.
6.1. Related Work

Model-free offline optimization. In this chapter, we specifically look at model-based optimization
methods that explicitly optimize against a forward surrogate model () that acts as a proxy for the
hidden oracle function r(z). However, related work have also proposed offline optimization meth-
ods that do not require access to a model ry(z) and instead impose constraints on the backbone opti-
mization method—we refer to such work as model-free offline optimization. Krishnamoorthy et al.
(2023b) frame generative design tasks as a ‘next-sample’ prediction problem and learn a trans-
former to roll out sample predictions; and Krishnamoorthy et al. (2023a); Yun et al. (2024) learn
a diffusion model to sample candidate designs conditioned on reward values. Because DynAMO
operates on MBO forward surrogate models (), we cannot leverage DynAMO with these model-

free methods. However, we compare them against DynAMO in Appendix D.4.

Active learning in optimization. In our work, we specifically consider the experimental setup of

one-shot, batched oracle evaluation: that is, the final candidate designs that are scored by the oracle
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function at the end of optimization are not used to subsequently update the prior over the de-
sign space to better inform subsequent optimization steps. In contrast, a separate body of recent
work has investigated generative design in the setting of active learning where there can be multiple
rounds of offline optimization to inform subsequent online acquisitions (Hernandez-Garcia et al.,
2024; Li et al., 2022b,a; Wu et al., 2023; Palizhati et al., 2022). For example, Li et al. (2024) show

how active learning can be formulated as a multi-fidelity optimization problem.

Reinforcement learning. Prior work has explored how to formulate offline generative design tasks
as reinforcement learning (RL) problems. Trabucco et al. (2022) used REINFORCE-style methods
similar to Williams (1992) to learn a myopic sampling policy, although do not use RL for offline
generative design. Angermueller et al. (2020b); Korshunova et al. (2022); and Jang et al. (2022)

leverage RL for offline optimization in the active learning setting outside the scope of our work.
6.2. Background and Preliminaries
6.2.1. Offline Model-Based Optimization

In the previous chapter, we formulated our model-based optimization (MBO) problem as a sam-
pling task, where the goal was to solve z* = arg max, y r9(z) as in (6.1). We primarily considered
this problem formulation because in experimental settings where offline optimization methods
are desirable, we are typically most concerned with the single best design we can obtain to evaluate
with an expensive-to-evaluate oracle function. However, other experimental settings may offer a
relaxed oracle evaluation budget, where it is feasible to evaluate batches of candidated designs as
opposed to a single proposed candidate. In this setting, we can instead reformulate offline MBO
as learning a generative policy 7* over a space of policies II such that the admitted distribution

q" (z) : X — [0,1] of designs maximizes

7" = argmax B, g (s [re(z)] (6.1)
well

over a design space X, where the hope again is that optimizing against rg(x) will learn a generative

policy that also proposes optimal designs according to the hidden oracle function r(z), too.
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6.2.2. Optimization Algorithms

To solve (6.1) and similar problem formulations, a number of optimization algorithms have been
reported in prior work. One of the most popular approaches is first-order methods such as gra-
dient ascent, adaptive moment estimation (Adam) (Kingma and Ba, 2014), and derivative work
(Duchi et al., 2011; Loshchilov and Hutter, 2019; Liu and Nocedal, 1989). Broadly, these optimiz-
ers leverage the gradient V,rg of the forward surrogate to iteratively update a candidate design.
However, such techniques have been shown to struggle in optimizing against highly non-convex

functions typical of real-world offline optimization problems (Trabucco et al., 2021, 2022).

Evolutionary algorithms, such as covariance matrix adaptation evolution strategy (CMA-ES) from
Hansen (2016, 2006) and cooperative synapse neuroevolution (CoSyNE) (Gomez et al., 2008), are
an alternative approach to optimization. Inspired by biological evolution, such methods iteratively
improve a population of candidate solutions using mechanisms like selection and mutation, and

do not require gradient information from the forward model.

Separately, Bayesian optimization (BO) (Kushner, 1964) is another model-based optimization tech-
nique historically used to optimize reward functions that are non-convex, noisy, and/or lack a
closed-form expression. Briefly, BO iteratively alternates between (1) fitting a probabilistic sur-
rogate model (e.g., a Gaussian process) to the acquired data and their scores according to 7;
and (2) acquiring new candidate designs according to an acquisition function, such as the ex-
pected improvement (EI) or upper confidence bound (UCB) (Ament et al., 2023; Wilson et al.,
2018; Zhou et al., 2024a). While BO has traditionally been leveraged for optimization problems
using expensive-to-evaluate black-box functions, recent work has shown that BO is also a power-
ful method for offline optimization tasks, too Maus et al. (2022); Yao et al. (2024); Eriksson et al.
(2019); Hvarfner et al. (2024); Eriksson and Jankowiak (2021); Astudillo and Frazier (2019). Prior
work from Maus et al. (2023); Jain et al. (2022); and others have investigated how to incorporate
diversity in existing BO frameworks; however, such methods either (1) gate whether to sample
candidate designs based on a diversity-based thresholding schema; or (2) have specifically been

proposed for the BO optimization framework. In contrast, our method explicitly includes diversity
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as an optimization objective, and is readily compatible with standard optimization algorithms.
6.2.3. Distribution Matching

Distribution matching is a technique leveraged in recent work on imitation learning and offline
reinforcement learning (RL) (Kostrikov et al., 2020; Ke et al., 2021). The approach considers an
experimental setup where RL agents cannot interact with the environment and instead must learn
from static, offline expert demonstrations sampled from an unknown state-action-reward distri-
bution. The Kullback-Leibler (KL)- divergence (de G Matthews et al., 2016) is commonly used to
train an agent to minimize the discrepancy between state-action visitations made by the RL agent
and the offline expert. Given a sufficiently large and diverse dataset of expert demonstrations, we
can also think of the KL divergence as encouraging the agent to match the diversity of the non-zero
support of p(x). Distribution matching has been used in prior work to learn robotic control policies
(Ho and Ermon, 2016; Wang et al., 2020; Kostrikov et al., 2020; Ke et al., 2021; Ma et al., 2022) and
align language models (Rafailov et al., 2023; Huang et al., 2024b; Chakraborty et al., 2024); here,
we demonstrate how distribution matching can also be leveraged in offline generative design (a
non-RL application) by matching the distribution of designs learned by a generative policy with

the distribution of designs from the offline dataset.
6.2.4. f-Divergence and Fenchel Conjugates

Definition 2 ( f-Divergence). Suppose we are given two probability distributions P(x), Q(z) defined over
a common support X. For any continuous, convex function f : R, — R that is finite over R, we define

the f-divergence between P(x), Q(x) as

DyQ@IP@) = Ernrio | (5 )] (62)

We refer to f as the generator of D¢(-||-). Two commonly used f-divergences are the Kullback-Leibler (KL)-
Divergence (defined by the generator fx(u) = ulogu) and the x*-Divergence (defined by the generator

Fe(u) = (u—1)%/2).

Definition 3 (Fenchel Conjugate). The Fenchel conjugate (i.e., Legendre-Fenchel transform) of a function
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f U — Ris defined as
() == —inf {—(u,v) + f(u) |ueU} (6.3)

where (u, v) is the inner product, and f* : V — R is the Fenchel conjugate defined over the dual space V of U.
Importantly, the Fenchel conjugate function is guaranteed to always be convex Borwein and Lewis (2006)
regardless of the (non-)convexity of the original function f. This allows us to make important convergence
guarantees in solving the Lagrangian dual problem in Algorithm 3. Fenchel conjugates are commonly used
in optimization problems to rewrite difficult primal problems into more tractable dual formulations Ma et al.
(2022); Borwein and Lewis (2006); Agrawal and Horel (2021)—uwe leverage a similar technique in our
work in Algorithm 3.

Lemma 2 (Fenchel Conjugate of the KL-Divergence Generator Function). Recall that the generator

function of the KL-divergence is fxr(u) := ulogu for u € Ry . The Fenchel conjugate of this generator is

fla(v) =€t
Proof. The proof follows immediately from the definition of the Fenchel conjugate in (6.3).
fgL () :==sup {uv —ulogu|u e Ry} (6.4)

We differentiate the argument on the right hand side with respect to u to find the supremum given

a particular v € V:

aa[uv—ulogu] =v—logu* —1=0—u* =e"! (6.5)

u u=u*

It is easy to verify that u* is a maxima. Plugging this result into (6.4),

fiL(v) = u*v —u*logu* = ve' ! — (v —1)e" 1 = ¢! (6.6)

Lemma 3 (Fenchel Conjugate of the x?-Divergence Generator Function). Recall that the generator
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function of the x?-divergence is f,2(u) := 3(u — 1)? for u € Ry.. The Fenchel conjugate of this generator

., 2
is fr2(v) = 5 + o

Proof. The proof follows immediately from the definition of the Fenchel conjugate in (6.3).

f;g (v) := sup {uv — é(u —1)?|ue R++} (6.7)

We differentiate the argument on the right hand side with respect to u to find the supremum given

a particular v € V:

5 =v—u'+1=0—-u"=v+1 (6.8)

*

a% [uv . 1)2]

u=u

It is easy to verify that u* is a maxima. Plugging this result into (6.7),

Additional details and technical discussion are offered by Borwein and Lewis (2006); Ma et al.
(2022); Nachum and Dai (2020); Amos (2023); and Terjék and Gonzalez-Sanchez (2022).

6.3. Distribution Matching for Generative Offline Optimization
6.3.1. Motivating Limitation of Naive MBO

Prior work from Mullis et al. (2019); Jain et al. (2022); Kim et al. (2023) have shown that an im-
portant challenge in offline optimization as in (6.1) is that of reward hacking: learned generative
policies can exploit a small region of the design space, resulting in a low diversity of proposed

designs. For example, consider the following lemma:

Lemma 4. (Diversity Collapse in Reward Optimization) Suppose that there exists a finite set of globally
optimal designs x such that ¥ := arg max,cy r(x) and r* := r(z}) is the optimal reward given a finite,

non-uniform reward function r(x). Given any distribution q™, we can decompose it into the form ¢" (x) =
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> jwid(x — 7)) + > wil(z = x7) + §(x), where wj > 0 for all j, and §(x) > 0and §(x7) = 0 for all j.
Then, G(z) satisfies [ dx g(z) = 0.

Proof. First, note that if [ dz g(z) = 0, we have
Equw@»h(x)]::][dx EE:ugé(x——a?)r(x)
J

= ij/daz §(z —xf)r(z) = ijr* =r* ij (6.10)

:7"’

which is optimal. Next, we show thatif [ dz §(z) > 0, then E,. 4 [r(z)] < r*. To this end, we define

1
<= <
- r r(x)_n_l

Xy ={zeX|l<r"—r(z)} Xn:—{xeX

}gx Yn>2 (6.11)

for each n € N. Note that all X, are disjoint by construction; also by construction, we have X\
{z3} = U,Z; &n. Furthermore, note that since g(x) = 0 for z = 7} for some j, we have 0 <

Jdxq(z) =3200, [ dr(z), so it must be that [, dz¢(x) > 0 for some m. Consequently,

./ de (@) —r(2) > ~ [ dzilz) > 0.

me

The expected reward would therefore be
B lr(@)] = [ do (@1 (o)

- /dm (Z wid(x — ) + Zw;ﬂ(a: =) | r(z) + 231/ dz §(z)r(x)
j j n=17n

> 6.12
< /dm (ijé(xxj)-l—z:w;ﬂ(xﬂs;)) 7"*—1—2/ dx §(z)r* (6.12)
j j n=1"/%n

:/mgmﬁ

:7"*
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so ¢" is suboptimal. The claim follows. O

Note that this result holds for both the oracle function r(x) and the forward surrogate r9(z). In-
tuitively, this lemma states that an optimal policy that maximizes (6.1) can only have non-zero
support at the global optimizers over X. However, many real-world reward functions do not have
a large number of globally optimal designs (Trabucco et al., 2021), leading to a low diversity of
generated designs seen in practice (Kim et al., 2023). Furthermore, there is no guarantee that the
set of optimal z cover a large region of the design space; in practice, we might be interested in

trading optimality of a subset of designs to achieve a greater diversity of candidate samples.
6.3.2. An Alternative MBO Problem Formulation

To reward generative policies in proposing diverse designs, we modify the original MBO objective
in (6.1) according to

T) = By lrol@)] ~ 2 D a"lI5) (613)

where Dxi (+||-) is the Kullback-Leibler divergence (KL-divergence) and 7,3 € Ry are hyperpa-
rameters. In subsequent steps, we abbreviate the expectation value over probability distributions

Eggr () [-] as Egr[-] for brevity.

The temperature hyperparameter 7. Equation (6.13) implicitly introduces a hyperparameter 7 €
R to control the trade-off between diversity and optimality. Note that the KL-divergence in (6.13)

is computed with respect to a distribution pZ,(x) defined as the T-weighted probability distribution:

Definition 4 (7-Weighted Probability Distribution). Suppose that we are given a reward function r(x) :
X — Rover a space of possible designs X, and access to an static, offline dataset D of real designs. We define

the T-weighted probability distribution over X (for > 0) as

exXpl7Tr{x
() o= AT o)
where the partition function Z™ := [, dx exp(rr(x)) is a normalizing constant. We use the dataset of

prior observations D = {(x;,r(x;))}7, to empirically approximate p (x), and refer to this approximation
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as ph(x) =~ p™(x). For 7 > 1, near-optimal designs that are associated with high reward scores are weighted
more heavily in pZ,; conversely, T = 0 weights all designs equally to achieve the greatest diversity in designs.
The penalized objective in (6.13) thereby encourages the learned policy to capture the diversity of designs in

the T-weighted distribution pZ,(x).

The KL-divergence strength hyperparameter 3. Separately, the hyperparameter 3 > 0 controls
the relative importance of the distribution matching objective. As 5 — oo, it becomes increasingly
important for the generator to learn a distribution of designs that match p},(x); setting 5 = 0

reduces J(7) to the original MBO objective in (6.1).
6.3.3. Adversarial Source Critic as a Constraint

Separately, to address the problem of forward surrogate model overestimation of candidate design
fitness according to rg(x), we constrain the optimization problem to ensure that expected source
critic scores over ¢" (x) and p},(z) differ by no more than a constant W, € R, similar to the ap-
proach to offline MBO used by Yao et al. (2024) introduced in the preceding chapter. That is,

max J(r) = Egrlro(e)] ~ D (a7]16)

mell (6.15)

st. Eyr[c"(z)] — Egr[c"(z)] < Wo

where the source critic ¢* : X — Ris aneural network as in (Lemma 1) that maximizes E, [c*(x)] -
Eg4[c¢*(z)] subject to the constraint ||c*(x)||;, < 1, where || - ||z, is the Lipschitz norm. Intuitively,
this constraint prevents the evaluation of the forward surrogate model 74(x) on wildly out-of-

distribution inputs encountered in the offline setting.

We are now interested in finding a generative policy 7* that solves this optimization problem in
(6.15); in our work below, we demonstrate how this approach can yield a policy that generates

high-scoring candidate designs that also better capture the diversity of possible designs in X'.
6.3.4. Constrained Optimization via Lagrangian Duality

Our problem in (6.15) is ostensibly challenging to solve: both the objective J(7) and the constraint

imposed by the source critic can be arbitrarily non-convex, making traditional constrained opti-
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mization techniques intractable in solving the optimization problem out-of-the-box. In this section,
we derive an explicit solution to (6.15) to make the problem tractably solvable using any standard

optimization algorithm.

Recall from Lagrangian duality that solving (6.15) is equivalent to the min-max problem

min max £(7; \) (6.16)
well )\ER+

where the Lagrangian £(m; A) : II x R — R is given by

L(m; ) =—J(m)
(6.17)
+ BA [Bpg [ (2)] — Byr [" (2)] — Wy
introducing A € Ry such that 3\ € R is the Lagrange multiplier associated with the constraint in

(6.15). From weak duality, the Lagrange dual problem provides us with a tight lower bound on the

primal problem in (6.15):

i ‘) = < mi ; .
Juax min L(m; A) fax g(A) < min Jnax L(m;A) (6.18)

where g()) := mingcp L£(m; A) is the Lagrange dual function. In general, computing g(\) is challeng-
ing for an arbitrary offline optimization problem; in prior work, Trabucco et al. (2021) bypassed
this dual problem entirely by treating A as a hyperparameter tuned by hand (albeit for a different
constraint); and Yao et al. (2024) approximated the dual function under certain assumptions about
the input space by performing a grid search over possible A values. In our approach, we look to
rewrite the problem into an equivalent representation that admits a closed-form, computationally

tractable expression for g(\):

Lemma 5 (Entropy-Divergence Formulation). Define J(x) as in (6.13). An equivalent representation
of J(m) is

J(m) =~ =H(q" () — (1 + B) Dx(q" (2)|pp(z)) (6.19)
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where H(-) is the Shannon entropy. Maximizing (6.19) is equivalent to maximizing (6.13) in the sense

that both objectives admit the same optimal policy.

Proof. Firstly, note that
B v T
J(7) = Eqr [ro(x)] — —Dxr(q"llpp)

~ 7 Egr [loge™™] ~ BDia(a" Iph) (6.20)
— By [loge™ @] — 8Dy (a7 pb)
where ~ denotes an equivalent representation of the objective (i.e., scaling .J(7) by 7 > 0 does not

change the optimal policy 7*). Further rewriting,

eTTG (I)
ZT

eTTH (I)

J(m) = Eqgr + Egrlog Z7 — BDxL(q"||pp) =~ E¢n — BDxL(q"|IpDp)

(6.21)

log

log

ZT

where we omit the constant E = log Zj because the expectation value argument is independent of

the policy 7. The remaining expectation value can be re-expressed via importance weighting:

q7r eT'I’g(.’L’) I
J(m) =Epr, [pT log ———| = BDx(¢"[Ipp) (6.22)
D

Assuming that the surrogate r9(z) is well-trained on the offline dataset D (i.e., r(z) ~ rg(x) Vz €

D), we have

™ 7r(x) T
€ T[0T q T T[T
J(m) =~ Epr. pTlOg 7+ | — BDxL(¢"[lpp) = Ep, [pf logpp} — B8DkL(q"||pp) (6.23)
D D

from Definition 4. Further rewriting, we have

q- ;4" -
J(m) = Epr [p log (pp : (f)] — BDxv(q"||pD)

77,

D
- qﬂl Pp E qﬂl T Dxr(q"™||pz 6.24
— B, E)quTr +Epr Igogq — BDxL(q"|IpDp) (6.24)
_ ¢, 4" 4 ™ |p5
= —Ey; | —log —| — E¢r [~ log¢"] — BDke(q¢"|IpD)

bp Pp
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From the definition of KL-divergence,

J(m) = —(1+ B)Ep, [qj log Cﬂ — E¢~ [~ logq"]

Pp Pp
~+ gy o ()| =B U ) (625)

—(1+ 8)Dx(q"|lpp) — H(q™)

up to a constant, where fxi.(z) := zlogz and f;(z) := —logz are convex functions, (-) is the

Shannon entropy, and Dy (+||-) is the KL divergence. O

Remark 2 (Equivalence of Lemma 5 and Canonical State-Matching). Of theoretical interest, we can
also show that the entropy-divergence formulation of our penalized objective function in Lemma 5 is equiva-
lent to the canonical state-matching objective used in traditional imitation learning. Continuing from (6.25),

one might notice that J(m) can be equivalently rewritten as

'q7r q’ﬂ' 1 .
J(m) = —(1+ BBy, | - log | — Eqr [~ logq”]
Pp Pp
q . q"] q"
—(1+ B)Epy, | = log —| — Epr [—Tlogq”]
( ) Pp pr pD Pp pD
q 4" o
LPp Pp | Pp
'q7r q7r 1
_(1+5)Ep% _%log (pD qﬂ_ 1/ 1+5)>]

ﬂ/(1+ﬂ)
—(1+ B)Eg [log ]

Assume that there exists a probability distribution py,(x) such that p,(z) < (ph ()58, Then

J(m) ~—(1+pP)E

q" B/(1+8) q" q"
< flog (L — —BE; [Alo . }z—ﬁD "pp) (627
i [1og (5175 | o o s w(@lih)  (627)

In other words, the optimization objective considered in (6.13) and in Lemma 5 is equivalent to a pure state-

matching objective — 3Dk (q" ||pp) predicated on the existence of a ‘rescaled” probability distribution pT,(x)

as defined above.
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To build intuition about how (6.19) is equivalent to (6.13), we can consider the behavior of the ob-
jective in the limit of 7 — +oo0: the reference distribution p7, approaches the sum-of-/-distributions
formulation in Lemma 4. In this setting, the entropy and KL-divergence terms are equivalent, and
the optimal policy 7* admits a distribution ¢™ with nonzero support only at the globally optimal
designs in p7,. Alternatively in the limit that 7 — 0 and 8 — +o00, p}, approaches a uniform
distribution and both (6.13) and (6.19) simplify to a state-matching objective according to the KL-

divergence loss term, without any explicit optimization against the surrogate model r4(x).
Lemma 5 enables us to write an exact formulation for the Lagrangian dual function g(\):

Lemma 6 (Explicit Dual Function of (6.15)). Consider the primal problem

max J(m) ~ —=H(q") — (1 + B)Dx(q"||pp)
e (6.28)

st By [o*(2)] — Bgrle*(2)] < Wy

The Lagrangian dual function g(\) is bounded from below by the function ge(\) given by

9e() 1= B [A(Eyp [¢* (2)] — Wo) — Eypy e @] (629)

Proof. Define fx1.(u) := ulog u. From (6.18), the dual function g(\) : R — R is given by

T

g(\) := min [(1 + B)Epz, fxL (C]T) —Eyxlog (¢™) + A (E%c* () = Egrc*(z) — Wo) }
mell Pp

= grnel%ll [(1 + B)Epz frL (;}) — <]Ep;3fKL <1;]TD> +Eqn logp%) + B (Epr c* () — Egrc™* (z) — W) }

= min [BEPB fxo (QT> — Eq4~ log pp + BA (Ep%c* (x) = Egnc* () — Wo) :|
well Pp
(6.30)

where we define S\ € R, as the Lagrangian multiplier associated with the constraint in (6.15).

Rearranging terms,

g(\) = min [BEPTD [— </\c’k . q,r) + fxu <q>} — Egr log pp + BAE,r ¢* () — BAW, (6.31)
mell bPp %)

Because the sum of function minima is a lower bound on the minima of the sum of the functions
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themselves, we have

g(A) > BE,z min [— </\c* : qj) + fxL <§;ﬂ —max [Eg~ logpp] + I;lelg [BAE,z ¢*(z) — BAWY]

mell pD mwell
. « 4" qr «
Pl glelﬁl[ < ‘ p%) i <pz>>} *ONE ) — AR

(6.32)
ignoring the term maxycrr [Eq~ log pp) that is constant with respect to A. In general, simplifying
(6.32) is challenging if not intractable. Instead, we note that minimizing over the set of admissible

policies IT achieves an optimum that is lower bounded by minimizing over the superset

g(N\) > BE,z. glelﬂlélr [— (A" (z) - 2) + fxo (2)] + 6)\Ep%c*($) — BAW, (633)

= B [—Epp, fi (A" (@) + AM(Eypp, ¢ () — Wo)]

where f*(-) is the Fenchel conjugate of a convex function f(-). The Fenchel conjugate of fxi.(u) =

ulogu is f§ (v) = e’ following Borwein and Lewis (2006), and so
gA) = B _EpTDeAc*(x)—l + )\(Ep{)C* (z) — Wo) (6.34)
Define the right hand side of this inequality as the function g,(\) and the result is immediate. [J

Lemma 6 admits an explicit concave function g;(\) such that g(A\) > g,()) for all A € R, ; because
we are interested in maximizing the dual function in leveraging Lagrangian duality as in (6.18), it
follows that maximizing g¢(\) bounds the maxima over g(\) from below. In subsequent steps, we

therefore optimize over this explicit function gy(\).

The utility of Lemma 6 is in solving for the optimal ) that maximizes the dual function lower bound
in (6.29). Prior work has explored approximating A via a grid search (Yao et al., 2024) or using iter-
ative implicit solvers; these methods cannot provide any formal guarantee in arriving at a reason-
able solution for A. In contrast, maximizing against g,(\) is easy because the function is guaranteed
to be concave for any /3, 7, Wy and source critic ¢*(z). We can therefore derive an exact solution for A

using any standard convex optimization problem solver (Agrawal et al., 2019; Diamond and Boyd,

105



2016). We now have a method to write an explicit expression for the Lagrangian £(7; A) by exactly
specifying the optimal A, and then leverage any out-of-the-box policy optimization method to solve

(6.15) via solving the easier, ostensibly unconstrained problem in (6.16).
6.3.5. Overall Algorithm

To summarize, our work aims to solve two separate but related problems in offline MBO in (6.1):
traditional model-based optimization approaches can yield candidate designs that are [1] of low
diversity; and [2] not optimal due to exploiting out-of-distribution errors of the forward surrogate
ro(z). We introduce a KL-divergence-based distribution matching objective—with input hyperpa-
rameters 7 and S—to solve the diversity problem; and build off prior work (Yao et al., 2024) to
constrain the search space using source critic feedback to solve the out-of-distribution evaluation
problem. We then show that there exists a provable, explicit solution to our modified offline MBO
problem (i.e., Lemma 6 and (6.16)). In contrast with prior work imposing specific constraints on
the forward model (Trabucco et al., 2021; Yu et al., 2021) or design space (Yao et al., 2024), or re-
quiring the use of model-free optimization methods (Krishnamoorthy et al., 2023a,b), our approach
only modifies the MBO objective and is therefore both optimizer- and task- agnostic. We refer to our method

as Diversity in Adversarial Model-based Optimization (DynAMO).
6.4. Experimental Evaluation

6.4.1. Datasets and Offline Optimization Tasks

We evaluate DynAMO on a set of six real-world offline MBO tasks spanning multiple scientific
domains and both discrete and continuous search spaces. Five of the tasks are from Design-Bench,
a publicly available set of offline optimization benchmarking tasks from Trabucco et al. (2022): (1)
TFBind8 aims to maximize the transcription factor binding efficiency of a short DNA sequence
(Barrera et al., 2016); (2) UTR the gene expression from a 5 UTR DNA sequence (Sample et al.,
2019; Angermueller et al., 2020a); (3) ChEMBL the mean corpuscular hemoglobin concentration
(MCHC) biological response of a molecule using an offline dataset from the CHEMBL3885882 public
ChEMBL assay (Gaulton et al., 2012); (4) Superconductor the critical temperature of a supercon-

ductor material specified by its chemical formula design (Hamidieh, 2018); and (5) D’Kitty the

106



Algorithm 3 (DynAMO). Diversity in Adversarial Model-based Optimization

Input: pre-trained forward surrogate model 5 : X — R, initalized source critic model ¢* : X —
R, reference dataset D = {(z,7(2}))}}_;, regularization strength 5 > 0, temperature 7 > 0,
batch size b, optimizer algorithm ab . X x R — X?, source critic learning rate 7critic, A dual step
size 1), oracle evaluation budget &
Initialize sampled candidates Dgen = @ C X x R
while a” has not converged do

// Solve for the globally optimal A using (6.29)

A< Ao (Ao = 1.0 in our experiments)

while ) has not converged do

A=A+ 77)\6957;)\)
end while

// Sample new candidates using the optimizer
{x?ew}?:l — ab(Dgen)

// Re-train the source critic parameters 0.
OW «+ 400
while 6 has not converged do

oW = Vo, [Earnplc* ()] = By gugenys [ (@)]

0. < min(max (6. + Neritic - W, —0.01),0.01)
end while

// Evaluate and cache the candidates according to (6.17)
Dgen = Dgen U {(27°", —=L(27"; A)) ?:1
end while
return top-k candidates from Dge, according to their
penalized MBO objective values

morphological structure of a quadrupedal robot (Ahn et al., 2020). Tasks (1) - (3) (i.e., TFBind8,
UTR, and ChEMBL) are discrete optimization tasks, where tasks (4) and (5) (i.e., Superconduc-
tor and D’Kitty) are continuous optimization tasks. We also evaluate our method on the discrete
(6) Molecule task described in Brown et al. (2019); Maus et al. (2022); Yao et al. (2024), where the

goal is to design a maximally hydrophobic molecule.
6.4.2. Experiment Implementation

All our optimization tasks include an offline, static dataset D = {(x;, 7(x;))}I~, of previously ob-
served designs and their corresponding objective values. We first use D to train a task-specific
forward surrogate model ry with parameters 6* according to (5.1). We parameterize ry(x) as a

fully connected neural network with two hidden layers of size 2048 and LeakyReLU activations,

107



trained using an Adam optimizer with a learning rate of 1 = 0.0003 for 100 epochs.

Importantly, optimization problems over discrete search spaces are generally NP-hard and often
involve heuristic-based solutions (Papalexopoulos et al., 2022; Xiong, 2022). Instead, we use the
standard approach of learning a variational autoencoder (VAE) (Kingma and Welling, 2013) to
encode and decode discrete designs to and from a continuous latent space, and optimize over
the continuous VAE latent space instead. Following prior work (Maus et al., 2022; Tripp et al,,
2020; Yao et al., 2024), we co-train a Transformer-based VAE autoencoder (consisting of an encoder
e, : X — X parameterized by ¢* and decoder d, : X : X — X parameterized by 7*) with the

surrogate model 7y : X — R (parameterized by §*) according to

0", 6" = argmin By m)op | — logdy(eles(2)
(0,0,6) €OXIx P (6.35)

+ BDLN (0, 1)[ep(x)) + allrg(ep(x)) — r(2)lI3

where N (0, I) is the standard multivariate normal prior and o = 1.0, 3 = 10~ are constant hyper-
parameters. We can then perform optimization against ry trained on the 256-dimensional contin-
uous latent space of the VAE, and then decode the candidate designs using d(-) to derive the cor-
responding discrete design following prior work from Maus et al. (2022); Gémez-Bombarelli et al.
(2018). We again use an Adam optimizer with a learning rate of = 3 x 10~ for both the VAE and
the forward surrogate. In this way, the search space for our discrete tasks becomes the X C R for

d = 256, the surrogate model is simply 75 : X — R, and the reward function r : X — R is now

() = Eindy (3)0) [F(2)] (6.36)

where # : X — R is the original expert oracle reward function over the discretized input space
X, and r(z) is the corresponding oracle reward function that accepts our continuous inputs from
& as input. Note that for the MBO tasks over continuous search spaces (i.e., the Superconductor
and D’Kitty tasks), we treat X = X and fix both the encoder e, and decoder d to be the identity

functions, as no transformation to a separate continuous search space is necessary.
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DynAMO also involves training and implementing a source critic model ¢*(z) as in (Lemma 1); we
implement c* as a fully connected neural network with two hidden layers each with size 512. We
implement the constraint on the model’s Lipschitz norm by clamping the weights of the model such
that the /.-norm of the parameters is no greater than 0.01 after each optimization step, consistent
with Arjovsky et al. (2017). We train the critic using gradient descent with a learning rate of =
0.01 according to (Lemma 1). Separately to solve for the globally optimal A using Lemma 6, we
perform gradient ascent on A until the algorithm converges. Finally, we fix the KL-divergence
weighting 3 = 1.0, temperature hyperparameter 7 = 1.0, and constraint bound W, = 0 for all
experiments to avoid overfitting DynAMO to any particular task or optimizer. All experiments
were run for 10 random seeds on a single internal cluster with 8 NVIDIA RTX A6000 GPUs. Of

note, all DynAMO experiments were run using only a single GPU.

Baseline Methods. Our proposed work, DynAMO, specifically looks to modify an offline MBO op-
timization problem as in (6.1) where we assume access to a forward surrogate model ry(x) to rank
proposed design candidates and offer potential information about the design space. We compare
DynAMO against other objective modifying MBO approaches: (1) Conservative Objective Models
(COMs; Trabucco et al. (2021)) penalizes the objective at a ‘look-ahead” gradient-ascent iterate to
prevent falsely promising gradient ascent steps; (2) Robust Model Adaptation (RoMA; Yu et al.
(2021)) modifies the objective rg(x) to enforce a local smoothness prior; (3) Retrieval-enhanced
Offline Model-Based Optimization (ROMO; Chen et al. (2023c)) retrieves relevant samples from
the offline dataset for more trustworthy gradient updates; and (4) Generative Adversarial Model-
Based Optimization (GAMBO; Yao et al. (2024)) introduces a framework for initially leveraging
source critic feedback to regularize an MBO objective. We evaluate each of these MBO objective
transformation methods alongside DynAMO and naive, unmodified Baseline MBO using repre-
sentative first-order methods (1) Grad. (Gradient Ascent) and (2) Adam (Adaptive Moment Esti-
mation (Kingma and Ba, 2014)); evolutionary algorithms (3) CMA-ES (Covariance Matrix Adap-
tation Evolution Strategy (Hansen, 2016)) and (4) CoSyNE (Cooperative Synapse Neuroevolution
(Gomez et al., 2008) ); and Bayesian optimization with (5) Expected Improvement (BO-qEI) and

(6) Upper Confidence Bound (BO-qUCB) acquisition functions.

109



Notably, the baseline methods COMs and RoMA impose specific constraints on the training process
for the forward surrogate model 74 (), and/or also assume that the forward model can be updated
during the sampling process (Yu et al., 2021; Trabucco et al., 2021). These constraints are not gen-
erally satisfied for any arbitrary offline MBO problem; for example, ry may be a non-differentiable
black-box simulator with fixed parameters. In contrast, both our method (DynAMO) and baseline
methods GAMBO and ROMO are compatible with this more general experimental setting; to en-
sure a fair experimental comparison, we evaluate both RoMA and COMs using a baseline forward
surrogate (i.e., RoMA~, COMs~) and using a specialized forward surrogate model trained and up-

dated according to the methods described by the respective authors (i.e., RoMA*, COMs™).

Evaluating the Diversity of Candidate Designs. To empirically evaluate the diversity of a final
set of k = 128 candidate designs {z!'}¥_, proposed by an offline MBO experiment, we report the
Pairwise Diversity (PD) of a batch of k£ candidate designs, defined by Jain et al. (2022); Kim et al.
(2023); and Maus et al. (2023) as

PD({af }o)) i= Byr [Byr por [dlaf,2])] | (6:37)

where d(-, ) is the normalized Levenshtein edit distance Haldar and Mukhopadhyay (2011) (resp.,

Euclidean distance) for discrete (resp., continuous) tasks.

Evaluating the Quality of Candidate Designs. To ensure that diversity does not come at the ex-
pense of finding optimal design candidates, we report the Best@k oracle score obtained by evalu-
ating k = 128 candidate designs {zI}%_, proposed in an experiment. Consistent with prior work
(Trabucco et al., 2021; Yao et al., 2024), we define

Best@k({z'}F_|) = lxgagkr(xf ) (6.38)

Crucially, the Best@k metric is computed with respect to the oracle function r(x) that was hidden
during optimization; we only use r(z) in (6.38) to report the true reward associated with each

candidate design.
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Finally, we rank each method for a given optimizer and task and report the method’s Rank aver-
aged over the six tasks according to the Best@128 (6.38) and PD (6.37) metrics. We also report the
Optimality Gap (Opt. Gap) (averaged over the six tasks), defined as as difference between the
score achieved by an MBO optimization method and the score in the offline dataset, for both the

Best@128 and PD metrics.

Oracle Functions for Optimization Tasks. The task-specific oracle functions r(z) are developed
by domain experts and assumed to return the exact, noiseless reward of all possible input de-
signs in the search space X'. The oracle functions associated with tasks from the Design-Bench
MBO evaluation suite are detailed by the original Design-Bench authors in Trabucco et al. (2022);
briefly, the TFBind8 task uses the oracle function from Barrera et al. (2016); the UTR task uses the
oracle proposed by Angermueller et al. (2020a); the ChEMBL task uses the oracle function from
Trabucco et al. (2022); the Superconductor task uses the oracle function from Hamidieh (2018);
and the task uses a MuJoCo (Todorov et al., 2012) simulation environment and learned control
policy from Trabucco et al. (2022) to evaluate input designs. The Molecule task uses the oracle

function from Ertl and Schuffenhauer (2009).

Data Preprocessing. For all experiments, we follow Krishnamoorthy et al. (2023b) and normalize
the objective values both in the offline dataset D and in those reported in Section 6.5 according to:
y = Y ~ Ymin (6.39)

Ymax — Ymin

where y = r(z) is the original unnormalized oracle value for an input design z, and ymax (resp.,
Ymin) is the maximum (resp., minimum) value in the full offline dataset. A reported value ofy > 1
means that an offline optimization experiment proposed a candidate design better than the best
design in the offline dataset. Note that in many of the MBO tasks, the publicly available offline
dataset D is only a subset of the designs in the full offline dataset; it is therefore possible (and

frequently the case) that max,cp y < 1 in our MBO tasks.

As introduced in the main text, we learn a VAE (Kingma and Welling, 2013) model to encode and
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decode designs for discrete optimization tasks to and from a continuous latent space, and per-
form our optimization experiments over the continuous VAE latent space. Following prior work
(Maus et al., 2022; Tripp et al., 2020; Yao et al., 2024), we co-train a Transformer-based VAE autoen-
coder (consisting of an encoder e, : X — X parameterized by ¢* and decoder dy : X : X — X

parameterized by v*) with the surrogate model ryp : X — R (parameterized by §*) according to

0", ¢", 0" = argmin E(z,r(x))ND[—10gd¢(93|6¢(90))
(0,0,0)EOXT X P (6.40)

+ BDLN (0, 1)[ep(x)) + allrg(ep(x)) — r(2)l]3

where N (0, I) is the standard multivariate normal prior and a = 1, 8 = 10~* are constant hyper-
parameters. We can then perform optimization against 7y trained on the 256-dimensional continu-
ous latent space of the VAE, and subsequently decode the candidate designs using dy(-) to derive
the corresponding discrete design following Maus et al. (2022). We again use an Adam optimizer
with a learning rate of = 3 x 10~ for both the VAE and the forward surrogate. In this way, the
search space for our discrete tasks becomes the X C R? for d = 256, the surrogate model is simply

rg : X — R, and the reward function 7 : X — R is now

r(z) == Ea}~d¢(5c|:c) [7(2)] (6.41)

where # : X — R is the original expert oracle reward function over the discretized input space
X, and r(x) is the corresponding oracle reward function that accepts our continuous inputs from
& as input. Note that for the MBO tasks over continuous search spaces (i.e., the Superconductor
and D’Kitty tasks), we treat X = X and fix both the encoder e, and decoder dy to be the identity

functions, as no transformation to a separate continuous search space is necessary.

Optimization Experiments. All baseline methods were evaluated using their official open-source
implementations made publicly available by the respective authors. In DynAMO, we initialize all
optimizers using the first b elements from a d-dimensional scrambled Sobol sequence (Sobol, 1967)

using the official PyTorch quasi-random generator SobolEngine implementation, where b is the
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sampling batch size and d is the dimensionality of the search space. Note that the Sobol sequence
only returns points with dimensions between 0 and 1; for each task, we therefore un-normalize
the sampled Sobol points Zy according to £9 = Zmin + (Z0 - (max — Tmin)), Where Zmax, Zmin are
the maximum and minimum bounds on the search space for our experiments, respectively. We fix
Zmin = —4.0 and zmax = +4.0 for all d dimensions across all tasks. In all experiments reported in
Table 6.1, each optimizer continues to sample from the search space in batched acquisitions of b
samples—we set b = 64 for all our experiments unless otherwise stated. After each acquisition, we
score the sampled designs using the (penalized) forward surrogate model (i.e., the Lagrangian in
(6.17) for DynAMO). If the maximum prediction from the recently sampled batch is not at least
as optimal as the maximum prediction of the previously sampled designs, then we define the ac-
quisition step as a failure; a sequence of 10 consecutive failures triggers a restart in the optimization
process where the optimizer starts from the scratch beginning with sampling with the Sobol se-
quence to initialize the optimizer as described above. After 3 restarts, we consider the optimization
process terminated, and all designs across all restarts are aggregated to choose the top £ = 128 final

candidate designs to be evaluated using the oracle reward function.
6.5. Results
6.5.1. Main Results

DynAMO consistently proposes the most diverse set of designs and achieves an Optimality Gap as
high as 74.2 (DynAMO-BO-qUCB) and an average Rank as low as 1.2 (Table 6.1). We find that Dy-
nAMO offers the largest improvements in diversity for first-order methods, although also improves
upon the evolutionary algorithms and Bayesian optimization methods. This makes sense, as both
Grad. and Adam are only local optimizers that often end up exploring a much smaller region
of the design space (without using DynAMO) compared to gradient-free methods. For example,
DynAMO-Grad. (resp., DynAMO-CMA-ES; resp., DynAMO-BO-qEI) achieves a Pairwise Diver-
sity Optimality Gap of 35.7 (resp., 55.2; resp., 74.2); in contrast, no other baseline method achieves

a diversity score greater than -6.9 (resp., 16.8; resp., 51.4) within the same optimizer class.

These results do not come at the cost of the quality of designs; for example, for all 3 optimizers
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Table 6.1: Quality and diversity of designs under MBO objective transforms. We evaluate Dy-
nAMO against other MBO objective-modifying methods using six different backbone optimizers.
Each cell consists of ‘Best@128 (Best) /Pairwise Diversity (PD)’” Rank and Optimality Gap scores
separated by a forward slash. Bolded (resp., Underlined) entries indicate the best (resp., second
best) performing algorithm for a given optimizer (i.e., within each column). See Supp. Table D.1
for detailed results broken down by MBO task.

Best/PD Rank | Optimality Gap 1
Grad. Adam CMA-ES CoSyNE BO-qEI BO-qUCB Grad. Adam CMA-ES CoSyNE  BO-qEI BO-qUCB
Baseline 5.0/5.5 4.5/6.0 3.7/3.8 53/45 5.8/5.2 3.7/3.0 6.8/-532  05/-52.4 14.4/95 -0.6/-52.1 18.7/47.1 19.4/435
COMs™ 7.3/65 6.0/53 57/52 5.7/5.7  43/4.0 45/45 -3.0/-53.5 -3.0/-524 7.6/-97 11/-51.6 19.2/51.4 19.0/45.5
COMs* 2.5/2.8 32/3.0 73/7.8 57/33 6.0/57  52/57 123/-69 81/-123 7.1/-382 3.5/-404 17.9/403 18.6/51.3
RoMA~ 6.7/5.7 45/63 37/35 53/45 27/33  3.8/3.0 -1.2/-533  0.5/-524  144/95 -0.6/-52.2 21.0/484 19.2/43.6
RoMA* 38/58 28/52 5.0/4.8 2.8/50 52/63 47/6.5 9.2/-46.8 14.5/-458 14.1/8.0 6.2/-52.0 18.3/329 18.5/39.9
ROMO 42/28 48/2.8 4.2/43 42/52  5.0/6.0 4.7/6.2 109/-12.7 6.4/-205 15.7/-31 3.1/-50.8 19.2/349 19.9/33.2
GAMBO 32/53 53/58 22/43 3.7/63  22/4.0 4.7/5.0 10.5/-52.1 8.6/-519 16.7/16.8 5.0/-53.6 20.8/30.0 20.2/30.3
DynAMO 28/1.2 2.8/1.2 3.3/1.8 2.3/1.2 3.0/1.3 3.5/1.8 14.2/27.8 14.5/35.7 17.5/55.2 12.3/-20.7 20.7/74.2 20.5/59.4

where DynAMO scores an average Rank of 1.2 (i.e., Grad., Adam, and CoSyNE backbone optimiz-
ers), DynAMO is also within the top 2 methods in proposing high-quality designs according to both
Rank and Optimality Gap. In fact, DynAMO proposes the best designs for 5 out of the 6 backbone
optimizers according to the Best@128 Optimality Gap. These results suggest that DynAMO can be
used to improve both the quality and diversity of designs in a variety of experimental settings for

both discrete and continuous search spaces.
6.5.2. Ablation Studies

In this section, we ablate key hyperparameters and algorithmic components of DynAMO in Algo-

rithm 3 to better interrogate and understand the utility of each algorithmic module.

Sampling Batch Size Ablation. Recall from (6.15) that a key component of our DynAMO algo-
rithm is the estimation of the empirical KL-divergence between the 7-weighted probability distri-
bution of real designs from the offline dataset and the distribution of sampled designs from the
generative policy. The latter distribution of generated designs is fundamentally dependent on our
sampling batch size b in Algorithm 3—the larger the batch size per sampling step, the better our
empirical estimate of the KL divergence between our two distributions. However, as the batch size
increases, there also exists a greater likelihood of significant regret in the sampling policy when
compared to the optimal sequential policy (Gonzalez et al., 2016; Wilson et al., 2017). To better

evaluate the impact of the sampling batch size parameter b, we experimentally evaluate sampling
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batch size values logarithmically ranging between 2 < b < 512. We use a BO-qEI sampling pol-
icy with the DynAMO-modified objective on the TFBind8 optimization task, and evaluate both the
Best@128 oracle score and Pairwise Diversity of the 128 final proposed design candidates (Fig. 6.1).
We find that the Best@128 design quality scores do not vary significantly as a function of the batch
sizes that were evaluated; however, there exists an optimal batch size (b = 64 in our experiments)

that maximizes the diversity of designs according to the pairwise diversity metric.
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Figure 6.1: Sampling batch size ablation. We vary the sampling batch size b in Algorithm 3
between 2 and 512, and report both the (left) Best@128 Oracle Score and (right) Pairwise Diversity
score for 128 final designs proposed by a DynAMO-BO-qEI policy on the TFBind8 optimization
task. We plot the mean + 95% confidence interval over 10 random seeds.

Adversarial Critic Feedback and Distribution Matching Ablation. Recall that instead of solving

the original MBO optimization problem in (6.1), DynAMO leverages weak Lagrangian duality to

solve the constrained optimization problem in (6.15)—copied below for convenience:
_ B T g T

max J(m) =Egq [T@(%)]—;DKL(Q llpD)

mell (6.42)

st. E )C*(ZE) - Ezwq"'(z’)c*(x) S WO

x~pl (x

We can think of this problem formulation as as the fusion of two separable components: (1)
Adversarial feedback via a source-critic model ¢*(x) to prevent out-of-distribution evaluation of
ro(z); and (2) Diversity (via KL-divergence-based distribution matching with a diverse reference
distribution p7,) in Model-based Optimization. These two components together form the founda-

tion of DynAMO presented in Algorithm 3. To better understand how each of these two com-
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ponents affects the performance of DynAMO-augmented optimizers, we can separate these two

components and study them individually.

AMO is our ablation method that solves the related optimization problem

max Egr[rg(x)]
well (643)
s.t. Epr%(x)c*(x) — Equw(i)c*(x) < Wy

instead of (6.42). Note that AMO solves the same constrained optimization problem as DynAMO
in the setting where 3 = 0, and is equivalent to the problem formulation considered in the previous
chapter (see Yao et al. (2024) for additional details). We note that our derivation of the Lagrange
dual function of (6.15) in Lemma 5 is invalid when 5 = 0, and so we cannot exactly solve (6.43)
using the same methodology presented in Algorithm 3. Instead, we leverage the adaptive Source
Critic Regularization (aSCR) algorithm from Yao et al. (2024) to approximate a solution to (6.43)
in the Lagrangian dual space—see Chapter 5 for additional discussion regarding the specific im-

plementation details of aSCR.

Separately, DynMO is our separate ablation method that solves the related (unconstrained) opti-
mization problem

max J(m) = By [ro(a)] 2 Dic (47 1) (6.44)

instead of (6.42). To implement DynMO empirically, we modify Algorithm 3 by ignoring the sub-
routine to solve for the globally optimal Lagrange multiplier A using (6.29), and instead fixing
A = 0 for the entire optimization process to effectively remove any contributions from the adver-

sarial source critic ¢*(x). All other implementation details were kept constant.

We compare DynAMO with AMO and DynMO in Tables 6.2-6.4. Firstly, we note that DynAMO
and AMO are competitive in proposing the high-quality designs according to the Best@128 oracle
scores, alternating between having the highest and second best Rank and Optimality Gaps across
all six tasks when compared with DynMO and the baseline optimizer for all optimizers evaluated.

This makes sense, as the purpose of the adversarial source critic-dependent constraint in (6.42)
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and (6.43) is to minimize out-of-distribution evaluation of ry(z) during optimization—as a result,
the forward surrogate model 7 (x) can provide a better estimate of the quality of sampled designs,
leading to higher quality designs according to the true oracle function r(x). Separately, we find
that DynMO and DynAMO also perform similarly in terms of the all 3 diversity metrics evaluated.
However, we find that DynMO (resp., AMO) struggles on proposing high-quality (resp., diverse)
sets of final designs. These experimental results collectively allow us to conclude that both the ad-
versarial source critic supervision and KL-divergence-based distribution matching are important

for DynAMO to propose both high-quality and diverse sets of designs.

$ and 7 Hyperparameter Ablation. Fundamentally, DynAMO relies on two important hyperpa-
rameters that define the constrained optimization problem in (6.15): (1) the 5 hyperparameter
dictates the relative weighting of the KL-divergence penalty relative to the original MBO objective;
and (2) the 7 temperature hyperparameter describes the distribution of reference designs weighted
according to their oracle scores in the offline dataset. To better interrogate how these hyperparame-
ters impact the performance of DynAMO-augmented MBO optimizers, we (independently) ablate
the values of both 3 and 7 logarithmically between 0.01 < 3,7 < 100. We use a BO-qEI sampling
policy with the DynAMO-modified objective on the TFBind8 optimization task, and evaluate both

the Best@128 oracle score and Pairwise Diversity of the 128 final proposed design candidates.

Our results suggest that as the strength of the KL-divergence term 3 increases, the diversity of
proposed designs (according to the Pairwise Diversity metric) increases roughly proportional to
the logarithm of 5 (Fig. 6.2). This is expected: as the distribution matching objective becomes
more important relative to the rg(x) forward surrogate model, the generative policy is rewarded
for finding an increasingly diverse set of designs that matches the T-weighted reference distribu-
tion. Similarly, we found that for sufficiently large values of § (i.e., 5 > 0.03 in our particular
experimental setting), the quality of designs (according to the Best@128 oracle score) decreases
due to the inherent trade-off between design quality (according to r4(z)) and diversity (according
to the KL-divergence in (6.15)). Interestingly, for small values of 5 (i.e., 8 < 0.03) the quality of

designs actually increases with 3. This is because in this regime, naively optimizing against pri-
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Table 6.2: Quality of design candidates in adversarial critic feedback (AMO) and diversity
in (DynMO) model-based optimization. We evaluate our method (1) with the KL-divergence
penalized-MBO objective as in (6.19) only (DynMO); (2) with the adversarial source critic-
dependent constraint as introduced by Yao et al. (2024) only (AMO); and (3) with both algo-
rithmic components as in DynAMO described in Algorithm 3. We report the Best@128 (resp.,
Median@128) oracle score achieved by the 128 evaluated designs in the top (resp., bottom) ta-
ble. Metrics are reported mean (95% confidence interval) 5155 10 random seeds, where higher is better.
Bolded entries indicate average scores with an overlapping 95% confidence interval to the best
performing method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics
indicate the best (resp., second best) for a given backbone optimizer.

Best@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap

DatasetD 439 59.4 60.5 88.9 40.0 884 — —
Grad.  90.0¢3  80.9(12D 602 88,840 36.08) 65.6(14%) 3.2 6.8
AMO-Grad. 731028 77106 644015 92,80 46.069) 90.614% 1.8 105
DynMO-Grad. 61307 63.6(110) 59,86  893(56) 36.3(69) 70.4(120) 35 0.0
DynAMO-Grad.  90.3%47) 862000  64432%  91.2(00) 44.2079) 89.8(32) 15 14.2
Adam 6290130 69.7(05  62.9(19)  93.3(89) 37.8(6%) 58.4(185) 2.8 0.5
AMO-Adam  94.0%2  60.0020)  60.957)  91.4(63) 37.8(6%) 88.4(138) 2.8 8.6
DynMO-Adam  66.6029)  68.7(10) 63704 93,0(3) 38.6057) 66.5(146) 25 2.5
DynAMO-Adam 952017 86.2000 65201  91,2(00) 45.567) 84.9(120) 17 14.5
BO-qEI  87.3G%%® 862000 654010 117G 53.163) 84.4(09) 35 18.7
AMO-BO-gEI 94109 86302 66,807 121000 50.8(%) 86.7(11) 1.5 20.8
DynMO-BO-qEI  93.2¢% 862000 66.008 12100 49.6(26) 85.9(10) 2.7 20.2
DynAMO-BO-gEI  91.9¢4) 862000  67,00% 121000 53.5(30) 85.5(11) 18 20.7
BO-qUCB  88.15% 86201 66407 12119 51.3(36) 84.5(08) 2.2 19.4
AMO-BO-qUCB 954016 862000 631D 121019 50.2(28) 83.6(10) 27 20.2
DynMO-BO-qUCB ~ 93.6% 862D 66.09 12100 49,960 83.9(11) 27 20.0
DynAMO-BO-qUCB 95109 86200  66.7(1% 12100 48149 86.9¢4+%) 2.2 20.5
Baseline-CMA-ES ~ 87.6(3% 86200  66.1(19) 1065 49.0049) 72.20) 2.8 144
AMO-CMA-ES  904¢49 86200  66.2(16) 12100 452039 72,2001 18 16.7
DynMO-CMA-ES  85.2(10D)  86.2(00 65,0006 1047:8) 51.6220) 83.631) 27 15.8
DynAMO-CMA-ES ~ 89.836) 85708 6390  117(67) 50.6(48) 78.5(55) 2.7 17.5
CoSyNE  61.7(1000 5730960 3604  94.8(101) 37.04D 62.7(131) 3.5 -0.6
AMO-CoSyNE ~ 79.8(106) 68,0012 64209 99.4(150) 37.0¢4D 627 22 5.0
DynMO-CoSyNE ~ 63.6(100) 5930108 639(16)  90.1(127) 37.0¢4D 6271 30 -0.7
DynAMO-CoSyNE = 913449 772016 63,909 114070 40.6(89) 67.5(4D) 12 12.3

Median@128 TFBind8 UTR  ChEMBL Molecule Superconductor D’Kitty Rank] Opt. Gap
DatasetD  33.7 428 50.9 87.6 6.7 77.8 — —
Grad. 581(61D 586130 59366 853077 36.0(67) 65.1(1449) 32 10.5
AMO-Grad. 63.8137) 75309 60133 91,6112 46.0(67 90.1(144) 1.2 21.2
DynMO-Grad.  50.5¢%  58.6013) 59787 5781 36.3(6) 70.0(120) 3.0 10.1
DynAMO-Grad.  47.02%  69.8¢0  61.922 85904 23.4(9) 68.7020 27 9.5
Adam 54748 604127 592(86)  g7,9(100) 37.462) 56.8(1%9 2.3 9.5
AMO-Adam  49.5¢9) 5570127 57700 84306 37.462) 87.8(43) 3.0 121
DynMO-Adam  54.00%  60.5(126)  59.3(86)  g59(108) 37.7(64) 63.6(156) 2.2 10.2
DynAMO-Adam ~ 47.7G0  69.052 62409  86.4(06) 23.0(6:0 656040 23 9.1
BO-qEI  485(1% 59920 3300 86706 28.7(1%) 72.408) 2.5 10.0
AMO-BO-gEI 464019 634033 63300 863003 28.9(4D 79.107) 22 11.3
DynMO-BO-gEI  50.51%)  61.12%) 633000  86.4(07) 28.4(07) 79.1(09) 2.3 115
DynAMO-BO-qEI  51.5(%9 65630 63300  86.7(06) 23.524 77.007) 2.0 11.3
BO-qUCB  50.31% 62164 63300 86,606 317002 74.4(09) 1.7 11.5
AMO-BO-qUCB  47.91%  59.802 63300 86,006 33129 73.8(12) 2.8 10.7
DynMO-BO-qUCB  50.3(17) 60132  63.300 8646 32427 74.309) 2.0 1.2
DynAMO-BO-qUCB ~ 48.8(%  59G37) 63300  86.50% 22,720 5040146 25 6.3
CMA-ES 507?37 717104 3300 839010 37.9(07) 59.3(109 22 112
AMO-CMA-ES 44208 72768 62,701 86.105) 21.420 54.906) 32 7.1
DynMO-CMA-ES  50.737) 75201 63,300 82.5(12) 38.7(39) 65.8(>1) 17 12.8
DynAMO-CMA-ES 45324 65889 59338 99,0021 22,561 60.6(150) 2.8 8.8
CoSyNE 55300 536102 60832 8740166 36.6¢4) 59.3(14%) 25 8.9
AMO-CoSyNE ~ 59.5(120)  3,5(112)  55406)  84.2(172) 36.6(44) 59.3(145) 2.2 9.8
DynMO-CoSyNE ~ 59.2(108) 55652 60,459 8790125 36.6+4) 59.3(14%5) 23 9.9
DynAMO-CoSyNE ~ 53.8(110) 63,4115 593G8) 99 9(121) 20.5(:%) 60.6150 25 9.5
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Table 6.3: Diversity of design candidates in adversarial critic feedback (AMO) and diversity
in (DynMO) model-based optimization. We evaluate our method (1) with the KL-divergence
penalized-MBO objective as in (6.19) only (i.e., DynMO); (2) with the adversarial source critic-
dependent constraint as introduced by Yao et al. (2024) only (AMO); and (3) with both algorith-
mic components as in DynAMO described in Algorithm 3. We report the pairwise diversity (resp.,
minimum novelty) oracle score achieved by the 128 evaluated designs in the top (resp., bottom)
table. Metrics are reported mean(95% confidence interval) 51055 10 random seeds, where higher is bet-
ter. Bolded entries indicate average scores with an overlapping 95% confidence interval to the best
performing method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics
indicate the best (resp., second best) for a given optimizer.

Pairwise Diversity@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1

Dataset D 65.9 57.3 60.0 36.7 66.0 85.7 — —
Grad. 12560 7868 7.978) 2410133 0.0 0.0 3.0 -53.2
AMO-Grad. 17.3028 112003 977 22.1(109) 0.0 1.562) 27 -52.1
DynMO-Grad. 20.905D 3062 582240 13586 0.000 0.0 3.0 -46.0
DynAMO-Grad. 66909 682108  772(215) 93 0(12) 129(553) 10466 1.0 27.8
Adam 12,0023 11,002D 4868 16.8(124) 6.4(145) 6.20140) 3.0 -52.4
AMO-Adam ~ 15.1(112) 103115 1210139 19,6(152) 0.308) 2,639 3.0 -51.9
DynMO-Adam 131014 10300 57,0260 238051 6.4(145) 0.000 2.8 -43.5
DynAMO-Adam  54.839 72334 84802 89953 158073 1260573 1.0 35.7
BO-qEI 7370060 73,805  993(01)  93,0(05) 19008 12474) 3.7 47.1
AMO-BO-qEI ~ 74.0000) 74304 99.3(01)  93.3(04) 193(12) 17.769 2.8 30.0
DynMO-BO-qEI ~ 74.503) 743006 99301  933(07) 20030 135(112) 23 50.8
DynAMO-BO-qEI ~ 74.8(%2 7463  99.4(01) 93,5004 19819 27797 1.2 74.2
BO-qUCB  73.90% 74304 99401 93,65 198(103) 94169 2.5 435
AMO-BO-qUCB ~ 74.00% 74303 99301 93404 19003 22,02 3.7 30.3
DynMO-BO-qUCB ~ 74.7(0» 74304 992001 93,6(05) 198120 92.6%) 22 435
DynAMO-BO-qUCB ~ 74.3% 744008 99301 93506 211(228) 17547 1.7 59.4
CMA-ES 47212 446059 93520 66204 12.8(00) 164(106) 23 9.5
AMO-CMA-ES  39.6(15% 53434 84848  §1,3(146) 173194 59.9(196) 2.3 16.8
DynMO-CMA-ES 33520  11.10D 34528 4560 38.164) 14.4002) 3.8 -39.3
DynAMO-CMA-ES ~ 73.6(%9  731G1D  720G1D 94,0009 97.8132) 292(83:5) 15 55.2
CoSyNE 56050 12708 2820113 122073) 0.0 0.0 2.8 -52.1
AMO-CoSyNE 5267 9100 2840571 7760 0.0 0.0 3.7 -53.6
DynMO-CoSyNE ~ 27.4(103)  13,0(118)  53.3(242)  18,1(138) 0.0 0.0 22 433
DynAMO-CoSyNE ~ 18.1(139 2033 3500179 22,8119 74.4463) 7700339 13 -20.7

Minimum Novelty@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1

Dataset D 0.0 0.0 0.0 0.0 0.0 0.0 — —

Grad. 212039 51739 974039 795197 95.0(07) 10261 2.3 74.5

AMO-Grad.  14.020 46727 968G 768157 83.8(68) 31.560) 3.8 58.3
DynMO-Grad.  21.9¢9  53,62D 93166  86.4(102) 95.0(07) 10261 18 75.4
DynAMO-Grad. 211D 52203 98,615 85.8(10) 95.0(04) 107(67) 17 76.7
Adam  23.73® 51109 95563  793(212) 94.8(07) 103(63) 2.7 74.5
AMO-Adam 237D 51.3G4 95051 80,006 84.8(64) 27.3G4) 3.0 60.4
DynMO-Adam 229323 51629 99206 7307 94.7(07) 10363 1.8 76.4
DynAMO-Adam  14.70%) 46205  98.7(12)  g59(18) 94.9(04) 1087 23 74.7
BO-qEI 21.8(%» 51503 97603 854015 94.60-D 1062 2.5 76.2
AMO-BO-qEI 154009 51802  97.8(03)  84.9(09) 85.104) 14.3049 33 58.2
DynMO-BO-gEI 2044 51800  977(03)  g57(13) 94.4(0%) 10802 22 76.4
DynAMO-BO-qEI  21.0(%» 51,902 974004  g52(09) 94.8(0D) 126(146) 2.0 79.4
BO-qUCB  21.6©®» 517002 97904  g53(11) 93.8(00) 98.8(1-1 2.0 74.8
AMO-BO-qUCB  21.904)  51.7(09 97,504 85.2(10) 81.9019) 25,9014 2.7 60.7
DynMO-BO-qUCB 20709 51.8(02 97103 849006 93.2014) 98.0(1%) 3.2 74.3
DynMO-BO-qUCB 2149 51702 97105 853011 94.702) 10943 22 76.6
CMA-ES 16531 47800 96507 73,0080 100 10000 23 72.3
AMO-CMA-ES 243009 53304 950015  72,5(236) 85.630) 41.5@0 3.0 62.0
DynMO-CMA-ES 14309 46104 98210 833(10) 1000 1000 2.0 73.7
DynAMO-CMA-ES 12908 48006 96735  81.8(134) 94.507) 11279) 23 74.3
CoSyNE ~ 24.53%)  49.7GD 98516  g6.6(127) 93.2(19) 91.920) 1.8 74.1
AMO-CoSyNE ~ 22.82%) 508019  90.8(142) 91,934 86.063) 29.6(30) 25 62.0
DynMO-CoSyNE ~ 19.3G® 46323 93467 88302 85.732) 29.6(36) 32 60.4
DynAMO-CoSyNE ~ 17.8(% 48433 96735  g0.20129 94.5(07) 11278 25 75.0
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Table 6.4: Diversity of design candidates in adversarial critic feedback (AMO) and diversity
in (DynMO) model-based optimization (cont.). We evaluate our method (1) with the KL-
divergence penalized-MBO objective as in (6.19) only (DynMO); (2) with the adversarial source
critic-dependent constraint as introduced by Yao et al. (2024) only (AMO); and (3) with both al-
gorithmic components as in DynAMO described in Algorithm 3. We report the L coverage score
achieved by the 128 evaluated designs as mean (93’ confidence interval) 5crog5 10 random seeds, where
higher is better. Bolded entries indicate average scores with an overlapping 95% confidence inter-
val to the best performing method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt.
Gap) metrics indicate the best (resp., second best) for a given backbone optimizer.

L, Coverage@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap T

Dataset D 0.42 0.31 1.42 0.68 6.26 0.58 — —
Grad. 0.16010 020013 21010 (42(018) 0.00(000) 0.00(0-00) 33 -1.44
AMO-Grad. 0.170010 024013 25010) 370011 0.00(0:00) 0.090% 25 -1.42
DynMO-Grad.  0.20001%)  0.220015  1,23(063)  (28(017) 0.00000) 0.00(0-00) 2.8 -1.29
DynAMO-Grad. 0.36(09%)  0.52(000)  146(038) 2 49(006) 6.47(1-24) 5.85(13%) 1.0 1.25
Adam  0.11000 022009 23015 (4g8(031) 0.27(055) 0.24(049) 2.8 -1.35
AMO-Adam  0.14(000 0220010 35029 5003 0.26(0:5%) 009012 30 -1.35
DynMO-Adam 020412 021015 1,106 045029 0.27(055) 0.03(0:00) 3.0 -1.23
DynAMO-Adam  0.33(°0%) 055003  1.44(039 240016 7.06(073) 6.91(07) 1.0 1.50
BO-qEI 0419 055000 237003 211015 7.84001) 6.6103% 2.8 1.70
AMO-BO-gEI  0.40(°03)  0.55(001)  2.38(010) 3 53(0.05) 7.45(001) 1.29(0.08) 3.7 0.82
DynMO-BO-gEI  0.40(%02)  0.55(001)  242(005) 3 55(003) 7.83(0:02) 6.72(048) 2.3 1.80
DynAMO-BO-qEI 042000 0.56(°0D  2.47(003) 2 54(0.03) 7.87(001) 7.92(0:09) 1.2 2.02
BO-qUCB  0.40(°02) 054000 240005 2 52(007) 7.78(004) 6.640:09 2.8 1.77
AMO-BO-qUCB  0.400°0D  0,56(000)  2,.39(0:05) 2 5(0.04) 7.37(009 1.34(008) 33 0.82
DynMO-BO-qUCB  0.39(°02 0550000 240(008) 3 52(004) 7.76(007) 66401 25 177
DynAMO-BO-qUCB 0402 05500 247(007) 2 54(0.05) 7.88(0:0%) 7.80(023) 1.3 2.00
CMA-ES 0.33009 048008 21800 1820012 3.26(142) 3.77%) 23 0.36
AMO-CMA-ES 031009 051000 217(006) 1 83(0.15) 3.37(049) 3.12(040) 25 0.27
DynMO-CMA-ES  0.34(%%) 0390012 06604 06004 1.85(228) 0.94(173) 37 -0.81
DynAMO-CMA-ES  0.40(°%)  0.56(000)  1.82(072) 2 .54(005) 4.75(216) 3.29(1:56) 1.5 0.62
CoSyNE  0.10¢007) 0220010 ,39(020)  (,27(0-13) 0.10(000) 0.10(0-00) 238 -1.41
AMO-CoSyNE ~ 0.12(%%8) 0220015 ,53(018)  0,14(0-13) 0.10000) 0.02(0:00) 2.8 -1.42
DynMO-CoSyNE  0.28(%%) 0320013 0.33(02)  (.79(0:65) 0.10(000) 0.02(000 23 -1.30
DynAMO-CoSyNE  0.2101)  0.18(%%)  0.64(04)  0.43039 1.85(022) 0.9401 18 -0.90
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marily r¢(z) leads to the policy exploiting suboptimal regions of the design space—penalizing the
optimization objective with a “‘small amount of’ the diversity objective helps the policy explore new

regions of the design space that can contain more optimal designs.
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Figure 6.2: 5 hyperparameter ablation. We vary the value of the KL-divergence regularization
strength hyperparameter 5 in Algorithm 3 between 0.01 and 100, and report both the (left)
Best@128 Oracle Score and (right) Pairwise Diversity score for 128 final design candidates pro-
posed by a DynAMO-BO-qEI policy on the TFBind8 optimization task. We plot the mean + 95%
confidence interval over 10 random seeds. The dotted horizontal line corresponds to the 5 = 0
experimental mean score, which could not be plotted as a point on the logarithmic z-axis.

Separately, the experimental results for our 7 ablation study are shown in Figure 6.3. (Note that
in these experiments, we fix 5 = 7 so that the ratio 3/7 in Algorithm 3 remains constant.) As
the value of 7 increases, the diversity of designs captured by the reference 7-weighted probability
distribution decreases and approaches a (potential mixture of) Dirac delta functions with non-
zero support at the optimal designs in the offline dataset. As a result, distribution matching via
the KL-divergence objective no longer encourages the generative policy to find a diverse sample of
designs, as the reference distribution is no longer diverse itself for 7 >> 1. Similar to our 3 ablation
study, we find that there is a unique exploration-exploitation trade-off phenomenon according to
the Best@128 oracle score as a function of 7: in our particular experimental setting, we find that
for 7 < 1, the Best@128 oracle score (modestly) increases, while for 7 > 1, the score decreases.
For 7 ~ 1, we find that the generative policy is encouraged to match high-quality samples that are

diverse enough together for the generative policy to explore new regions of the design space.
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Figure 6.3: 7 temperature hyperparameter ablation. We vary the temperature hyperparameter
7 in Algorithm 3 between 0.01 and 100, and report both the (left) Best@128 Oracle Score and
(right) Pairwise Diversity score for 128 final designs proposed by a DynAMO-BO-qEI policy on
the TFBind8 optimization task. We plot the mean + 95% confidence interval over 10 random seeds.

Oracle Evaluation Budget Ablation. Recall that in our experiments, we evaluate DynAMO and
baseline methods using an oracle evaluation budget of k£ = 128 samples consistent with prior work
(Krishnamoorthy et al., 2023b; Yu et al., 2021; Trabucco et al., 2021; Chen et al., 2023c; Yao et al.,
2024). More specifically, this means that any offline optimization method proposes exactly £ de-
sign candidates that are evaluated by the hidden oracle function r(x) as the final step for experi-
mental evaluation. In Table 6.1, we reported both the Best@k and Pairwise Diversity@k metrics,
where Best@k represents the maximum oracle score achieved by the k final design candidates; and

Pairwise Diversity@k represents the pairwise diversity averaged over the k£ candidates.

However, in different experimental settings we might have a different evaluation budget avail-
able—larger values of k are more costly but enable us to evaluate more designs that are potentially
promising, whereas smaller, more practical budgets may preclude the evaluation of optimal de-
signs according to r(x). In this section, we evaluate the performance of DynAMO as a function
of the allowed evaluation budget 16 < k£ < 1024. We compare DynAMO-augmented optimizers
against the corresponding vanilla backbone optimization method on the TFBind8 task, and plot

the Best@k and Pairwise Diversity@k metrics as a function of k in Figure 6.4.

As expected, the Best@k oracle score is monotonically non-decreasing as a function of & for all

DynAMO-enhanced and baseline optimizers (Fig. 6.4). We also find that in the limit of £ > 1,
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the DynAMO optimizers are able to propose best designs that are more optimal than the designs
by their baseline counterparts for first-order, evolutionary, and Bayesian optimization algorithms.
Furthermore, DynAMO achieves a mean Best@k score non-inferior to that of the baseline method

for all k£ > 128 across all the optimization methods evaluated on the TFBind8 task.

Separately, we find that the Pairwise Diversity of the k designs proposed by DynAMO-augmented
first-order optimizers (i.e., DynAMO-Grad. and DynAMO-Adam) increases as a function of k.
This makes sense, as first-order methods generally produce optimization trajectories that are sim-
ple curves in the design space as a function of the acquisition step. In contrast, we find that the
Pairwise Diversity decreases after a certain optimizer-dependent threshold £ for evolutionary and
Bayesian optimization-based backbone optimizers. This is because as both classes of optimization
methods do not necessarily sample repeatedly from any given region of the input space; as a re-
sult, the pairwise diversity between any two sampled points may decrease as more of the design
space has been explored as a function of k. Finally, we found that leveraging DynAMO improves
the Pairwise Diversity of designs compared to the baseline objective for almost all optimizers and
values of k assessed. These results suggest that DynAMO helps optimization methods discover

both high-quality and diverse sets of designs across a wide range of oracle evaluation budgets.

Optimization Initialization Ablation. In Algorithm 3, we initialize DynAMO by sampling the
initial batch of b = 64 designs according to a pseudo-random Sobol sequence as described in
Section 6.3. This initial batch of designs is used as the ‘starting point’ in our first-order opti-
mization experiments. However, most first-order offline MBO algorithms reported in prior work
(Trabucco et al., 2021; Yu et al., 2021) do not follow this same initialization schema. Instead, they
perform a top-k initialization strategy where the top k£ = b designs in the dataset with the highest
associated reward score constitute the initial batch of designs. First-order optimization is then per-
formed on these initial top-k designs. However, it is possible that for many MBO problems, these
top-k initial designs constitute only a small “area’ of the overall search space, resulting in a lower

diversity of final designs when compared to Sobol sequence initialization.

To interrogate whether the gains in diversity of designs obtained with DynAMO are due to our
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Figure 6.4: Oracle evaluation budget ablation. We vary the allowed oracle evaluation budget
k in Algorithm 3 between 16 and 1024, and report both the (first two rows) Best@128 Oracle
Score and (last two rows) Pairwise Diversity score for k final designs proposed by both Dyn AMO-
augmented and base optimizers on the TFBind8 task. We plot the mean + 95% confidence interval
over 10 random seeds.
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Sobol sequence-based initialization strategy, we evaluated Gradient Ascent, COMs, RoMA, ROMO,
GAMBO with Gradient Ascent, and DynAMO with Gradient Ascent using both Sobol sequence-
based and top-k-based initialization strategies. All algorithms were initialized using k = b = 64
samples and used Gradient Ascent as the backbone optimizer (except for RoMA (Yu et al., 2021),

which used Adam Ascent as in the original method proposed by the authors).

Our results are shown in Table 6.5. Empirically, we found that the relative performance of Sobol
sequence-initialized and Top-k-initialized optimizer largely depends on the specific algorithm; for
example, COMs and RoMA strongly benefit from using Top-£ initialization in obtaining high-
quality designs. This makes sense, as the original authors for both methods use Top-k initialization
for all their experiments. In contrast, the quality of designs proposed by GAMBO and DynAMO

is better with Sobol sequence initialization.

While DynAMO using Sobol sequence initialization does indeed outperform the Top-k-initialized
counterpart across all tasks, both initialization strategies consistently propose batches of designs
with competitive pairwise diversity scores when compared to other first-order optimization al-
gorithms. This suggests that DynAMO is able to provide a significant advantage in proposing
diverse designs that extend beyond the choice of initialization strategy alone. Separately for the
other first-order optimization methods assessed, there is no clear advantage in obtaining diverse
designs when using Sobol sequence initialization according to the pairwise diversity metric across
all tasks. Our results suggest that DynAMO is able to propose both high-quality and diverse sets

of designs with performance exceeding what is possible with using a Sobol initialization alone.
6.5.3. Theoretical Guarantees

We seek to place an upper bound on the difference between true diversity-penalized objective

T(7) = B0 r(@)] — 2 D (@) () (6.45)

realized by the final generative policy 7 € Il learned by DynAMO, and the true diversity-penalized

objective realized by the true optimal policy 7* := argmax, . J*(7). Note that this objective
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Table 6.5: Optimization initialization ablation. We evaluate both Sobol sequence-based and Top-
k initialization strategies for DynAMO with Grad. Ascent and other first-order MBO methods. We
report the maximum oracle score (resp., pairwise diversity score) achieved out of 128 evaluated
designs in the top (resp., bottom) table. Metrics are reported mean (%> confidence interval) 5crogg 10
random seeds, where higher is better. max(D) reports the top oracle score in the offline dataset.
All metrics are multiplied by 100 for easier legibility. Bolded entries indicate the higher average
scores for a given optimization method.

Best@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Win Rate 1

Dataset D 439 59.4 60.5 88.9 40.0 88.4 —
Grad. (Sobol)  90.0¢4%)  80.90121) 029 8880 36.0(6%) 65.6(145) 3/6
Grad. (Top-k) 85131 64,007  63.3000) 90.1(03) 27.1(10) 67.8(00) 3/6
COMs (Sobol)  84.7053) 60422 63300 91.4004) 17.3(05) 82.8(29) 0/6
COMs (Top-k) 931G 67.009  64.600 971016 41.2¢48) 91.8(0%) 6/6
RoMA (Sobol)  96.50 77800  33(00)  g55(24) 46.529) 93.9(10) 4/6
RoMA (Top-k) 96.500 77800 3300  g47(00) 49.804) 95.7(1:6) 6/6
ROMO (Sobol)  97.70:2  67.00 683005  90.8(04 45.5016) 86.1(05) 3/6
ROMO (Top-k)  98.107 66800 63,008 91.8(09) 38.7(25) 87.8(09) 3/6
GAMBO (Sobol) 73.1128)  77.1(6) 64,4019 92.8(80) 46.08) 90.6(14%) 5/6
GAMBO (Top-k) 78.50% 6830  63.0000) 90.6(%-3) 27.1(10) 77.8(00) 1/6
DynAMO (Sobol)  90.3%+7)  86.2(00)  64.4(25) 91.2(00) 44.2(78) 89.8(32) 6/6
DynAMO (Top-k)  81.964 64402 3300 90803 29.4¢44) 75.3(11:6) 0/6

Pairwise Diversity@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Win Rate 1
Dataset D 33.7 428 50.9 87.6 6.7 77.8 —
Grad. (Sobol)  12.560)  7.8(58) 7.9(78) 24.1(133) 0.0(00) 0.000 3/6
Grad. (Top-k)  83%7 40366  63.16% 28.4(60) 0.0(0-0) 0.0(0:0) 5/6
COMs (Sobol)  65.40% 57301 59301 72.6(07) 43.9(165) 33.8(17) 2/6
COMs (Top-k)  66.6(10 57402 81,69 3.8(09) 99,5(2548) 21.135) 4/6
RoMA (Sobol)  21.002 3,800 5.9(0:0) 1.8(0:0) 70.3(13.6) 8.1(03 4/6
RoMA (Top-k) 21303 3800 5.9(02) 1.8(00) 49.461) 14.8(06) 5/6
ROMO (Sobol)  64.40%) 56902 59309 39009 58.3(129) 10.905) 3/6
ROMO (Top-k) 62.108 57100 539(06) 48.7(0-0) 51.7617) 22.1(55 3/6
GAMBO (Sobol) 151112 1030115 12,1013 19,6(152) 0.3(08) 2,669 2/6
GAMBO (Top-k) 59.2659  54.132% 793349 33.4(19) 0.0(0:0) 0.0(0:0) 4/6
DynAMO (Sobol)  66.9¢%)  8.2(108)  772(215)  93,0(12) 1290553 104561 6/6
DynAMO (Top-k) 5520109 46452 76845 36461 1200300 85.7(50.0) 0/6
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J*(m) is not equivalent to the offline MBO objective J(7) introduced in (6.13); importantly, the
objective J() is a function of the true, hidden oracle reward r(x) as opposed to the forward sur-
rogate model rg(x). Furthermore, the KL-divergence penalty is computed with respect to the frue
T-weighted probability distribution p” (x), as opposed to its empirical estimate computed from the
offline dataset D as in Definition 4. In principle, (6.45) captures the true trade-off between diversity
and quality of designs that we hope to achieve by the theoretically optimal zero-regret generative

policy 7* that maximizes (6.45) over the space of policies II.

Our main result is in Theorem 6 below, although we first step through the relevant assumptions

and intermediate results necessary to arrive at (6.45). Firstly, we assume the following:

Assumption 1 (Surrogate Model Error Bound). There exists a finite 5 € R such that
Eppr (a)[1(2) — 70 (2)]* < €5/4 (6.46)

for any choice in T > 0, where p™ (x) is the true T-weighted probability distribution over X.

Assumption 2 (Policy Realizability). Both the true optimal sampling policy 7* according to (6.45) and

optimal sampling policy 7 according to (6.15) are contained in the (finite) policy class I1.

Assumption 3 (Bounded Importance Weights). Define the importance weight w(x) as the ratio between
probability distributions q™ (x) and p(x). There exists a finite M € R such that for all possible permutations

of m € {mr,n*} and p(z) € {p"(x), p}(x)}, we have w(x) := ¢" (z)/p(z) < M forall x € X.

Under these assumptions, we first place a bound on the error of the forward surrogate model
over the distribution of generated designs from the optimal policies according to both the offline

objective J(m) and true objective J*(7):

Lemma 7 (Bounded Prediction Error). Assume there exists an M € R finite satisfying Assumption

3. Then with probability at least 1 — ¢ we have (for any 6 > 0 and for both m = * and m = 7)

2 log (2|11
oo I1(@) = rof@)] < 2 2y 208 (647)



where n := |D| is the number of datums in the offline dataset D.

Proof. Under Assumption 1, Jensen’s inequality gives us

9 €0
EprT(x) ‘T(x> - 7'9(33)‘ < \/EINpT(:c) [7’(:(}) - 7"9(:6')]2 < ZO = 5 (648)
Furthermore, Assumption 3 and Cortes et al. (2010) yield
Epmpr (o) I1(@) = 70(@)] = Bpgriey Ir(@) = ro(@) |
q"(x
= [Bansro @) = 1@ = Bapgin | £ ) ]| 69
pp(x)

2log(2/111/3)

n
with probability at least 1 —d. In the offline setting (as in our work) and assuming that the forward
surrogate model ry(x) has been well-trained according to (5.1) or a similar learning paradigm (e.g.,
see Trabucco et al. (2021); Yu et al. (2021)), we can reasonably assume that e < E, = ()[r(z) —
r¢(z)]2. We therefore have an upper bound on the prediction error of the forward surrogate model

over the distribution ¢™ (x) over generated designs:

Ex~q"(x) ’7“(.%') - T9(x)‘ < EJENPT(I) ‘T‘(JZ) a 7“9(1‘)’

21og(2|I1]/4) < €0 M 2log(2|11|/90)

n 2 n

(6.50)
+M

with probability at least 1 — 6. O

Under Assumption 3, we can also place an upper bound on the true and realized KL-divergence

penalties:

Lemma 8 (Bounded KL-Divergence). Assume there exists an M € R finite satisfying Assumption 3.

Then with probability at least 1 — ¢ we have (for any 6 > 0 and for both m = 7* and m = 7)

[ Dk (q" (2)p" () = Dxe(q" (2)[[pp(2))| < M+/log([11]/6) (6.51)
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Proof. According to the definition of M,

DT @ (0) = Banyrioy | S o8 (445 )| < Mo b1 (652)
From Hoeffding’s inequality (Hoeffding, 1963),
Y T e T 282
P (1Dx (0" (@)l (2)) ~ Dr "l Ioba))] = &) < s (7 ) (65)

for any £ > 0. We can choose to define ¢ := /(M log M) - log(|TI|/6) /2 such that

D (a” (@) 7 (2)) — D (a7 (@) 19|
_ /(M log A1) -Tog([TI[/6) _ M /log([TI/5)
- V2 G

(6.54)

< M+/log(|11]/6)
with probability at least 1 — 4. O

We are now ready to prove our main result:

Theorem 6 (Bounded Diversity-Penalized Objective J*(7)). Assume that there exists an M € Ry

finite satisfying Assumption 3. Then with probability at least 1 — &, we have (for any 6 > 0)

TH(r) — J*(7) < 20 + 2M <¢25 + f) log <8’5H‘> (6.55)

where n := |D| is the size of the offline dataset D.

Proof. Firstly, we combine Lemmas 7 and 8 using the triangle inequality to bound the difference

between the true reward J*(7) and the offline reward J(7), where 7 € Il maximizes J () as defined
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in (6.13).

1) = 77) = (Bampolro(@] = 20 @1155) ) = (Evngein )] - 2Dl @)l o))

IN

ooy () — ro(@)] + 2 | D (o™ @) 7 () — D (g™ (@) 7 2]

{;‘?0 M /2log(i|ﬂf/5)> + M- g log(4]H\/5)
€ 2 B 8|11
3 (e ) s (%)

with probability 1—(5/2). Because # := argmax__;J(7), we must have J(7*) < J(7). Substituting

IN

IN

(6.56)

this into the left hand side of (6.56) gives

J(*) — J*(7) < %0 M <;ﬁ + f) log <8‘6H‘> (6.57)
Separately, we have (with probability 1 — (§/2))
P ) = 90 = (B 0] = D0l @)1 (0)))
- <E~ o))~ £ D™ @2
< By (@) — 7o) + 2 | D™ @) (@) ~ Diala™ @)Ipp(@))| (g 5y

< <€° 21°g 8|H|/5)> + M- ﬁ\/log ([4T1[/)

150} 2 B 8|H|
<—4+M[|{—=+=]4/lo
=327 <\/ﬁ " r) o8 < 5
following the derivation in (6.56) except for 7* (as opposed to 7) that maximizes J*(7) (as opposed

to J(m)). Summing (6.57) and (6.58) gives

J*(¥) = JH(7 )<50+2M<;ﬁ+f) log (8’5m> (6.59)

with probability 1 — 4. O
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We remark that we only prove Theorem 6 in the unconstrained optimization setting; in principle,
a tighter bound could exist in the adversarially constrained formulation introduced in (6.15), as a
bound on the 1-Wasserstein distance between ¢” (x) and pT,(x) will almost surely place a favorably

tighter bound on the forward surrogate model prediction error than Lemma 7.
6.6. Discussion and Conclusion

We introduce DynAMO, a novel task- and optimizer- agnostic approach to MBO that improves the
diversity of proposed designs in offline optimization tasks. By framing diversity as a distribution-
matching problem, we show how DynAMO can enable generative policies to sample both high-
quality and diverse sets of designs. Our experiments reveal that DynAMO significantly improves

the diversity of proposed designs while also discovering high-quality candidates.

Limitations and Future Work. There are also important limitations of our method. Firstly, we note
that while DynAMO can significantly improve the diversity of proposed designs in offline MBO
while preserving Best@128 performance, our method is not as competitive with existing baselines
according to the median score obtained by the 128 designs (Supp. Fig. D.2). The suboptimal perfor-
mance of DynAMO according to this Median@128 metric is unsurprising given that our primary
motivation of DynAMO is to obtain a diverse sample of designs while simultaneously ensuring
that a nonzero subset of them are (near-) optimal. Furthermore, we empirically observe that no
method is state-of-the-art on both Best@128 and Median@128 metrics. While it would be ideal for
DynAMO (or any method) to be state-of-the-art for all quality and diversity metrics, we argue that
obtaining a good Best@128 score is more important than a good Median@128 score, as the principle

real-world goal of offline MBO is to find a design that maximizes the oracle function.

Secondly, we also limit our study of DynAMO to offline MBO tasks that are well-described and
studied in prior work. In principle, real-world optimization problems may be complicated by noisy
and/or sparse objective functions, ultra-high dimensional search spaces, small offline datasets, and
other practical limitations. We leave a more rigorous interrogation of how such offline MBO meth-

ods perform in such settings for future work.
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CHAPTER 7

CONCLUSION

This dissertation has examined the design of distributionally robust machine learning systems
that operate reliably in real-world biomedical and scientific settings. Motivated by the potential
of machine learning to be applied in high-stakes domains—such as clinical medicine and scien-
tific discovery—this work has sought to address a central and pressing challenge: while modern
learning systems demonstrate exceptional performance under idealized conditions, they often fail
when deployed in the real world, where they are faced with environments that differ meaning-
fully from those represented in their training data. In Chapter 2, we introduced the theoretical
underpinnings of distribution shift ‘in-the-world,” although a key takeaway from this dissertation
is that such failures are not merely theoretical curiosities: poor generalization of naive ML systems
is deeply consequential and can compromise safety, equity, and scientific validity. The results pre-
sented in this dissertation collectively advocate for more robust generalization under distribution

shift. This dissertation was centered around two key hypotheses to achieve this goal:

1. Interpretable-by-design ML systems enable human-like compositionality in predictions, en-

abling better out-of-distribution generalization.

2. Adversarial source critic models can help us implement meaningful and computationally

tractable bounds on the 1-Wasserstein distance, and therefore the empirical test risk.

The first part of this dissertation explored the hypothesis that interpretability can be leveraged as a
means of achieving generalizability. Through the introduction of models that are interpretable-by-
design, whose internal representations are constrained to be semantically meaningful and aligned
with concepts that can be understood and verified by human experts, we showed that we can
improve the out-of-distribution performance of ML systems. In Chapter 3, we showed how inter-
pretable concepts derived from evidence-based medical guidelines can enable generalist language

models to better generalize to domain-specific tasks, such as assisting with medical image ordering
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in acute patient care. Separately in Chapter 4, we demonstrated how to integrate clinical knowl-
edge from clinical experts to define the internal representation of multimodal patient data. In both
settings, interpretable-by-design systems not only performed competitively with black-box coun-

terparts, but also enabled direct alignment with medical knowledge for improved generalizability.

Our second line of inquiry considered scenarios in which full control over model architecture or
training data is not possible—a common constraint in real-world deployments. In such cases, ma-
chine learning systems can be thought of as black-box predictors, and the challenge becomes one
of constraining their post-training behavior to input regimes where their predictions are reliable.
To address this, I developed a novel framework based on adversarial supervision to regularize
the generalization behavior of black-box models used in offline optimization problems in Chap-
ter 5. By leveraging source critic models trained to discriminate between in-distribution and out-of-
distribution inputs, this computationally tractable approach enabled us to better solve generative
design problems across a wide range of scientific domains. In Chapter 6, we then extended this
method to accommodate the problem of diversity in offline generative design, where our objective
is not only to propose optimal candidates, but also to generate a diverse set of high-quality solu-
tions. This is particularly relevant in scientific discovery, where greater coverage of many (near-)

optimal designs can enable better secondary downstream exploration (Supp. Table D.10).

Taken together, the contributions of this dissertation highlight a broader methodological insight:
learning systems that incorporate structured priors—whether in the form of domain knowledge,
semantically constrained representations, or adversarial model feedback—exhibit improved relia-
bility and adaptability when compared to purely data-driven models. Ultimately, I hope that the
methods proposed in this dissertation enable us to work towards deploying robust, verifiable, and
generalizable machine learning systems in mission-critical settings. Moving forward, the methods

presented here naturally open several promising research directions to explore in future work:

Human-AlI Collaboration. A key qualitative observation made in the work described in Chap-
ters 3-4 and in Appendix B is how human experts can be affected by Al prediction models in appli-

cations to patient care. Preliminary findings reported by Yao et al. (2025a); Wu et al. (2025) sug-
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gest that interpretable ML tools can improve the diagnostic performance of clinicians in simulated
hospital environments, corroborating a growing body of evidence that human workflows can be
effectively augmented with interpretable and generalizable Al tools (Nori et al., 2025; Korom et al.,
2025; Perivolaris et al., 2024). However, Dell’Acqua et al. (2023); Dell’Acqua (2022) previously
reported that human-Al interactions can be challenging to characterize properly, and humans
are subject to over-reliance on Al recommendations that are plausible but non-verifiable, or even
grossly incorrect (Agarwal et al., 2024a). Furthermore, Bastani et al. (2025) reported that genera-
tive Al tools can have detrimental impacts on education without appropriate usage guardrails in
place. Given these challenges alongside the growing adoption of ML tools in high-stakes pipelines,
the challenge of accurately characterizing human-Al interactions remains paramount and an im-
portant direction for future work. The algorithms proposed in this dissertation were designed to
align with human reasoning, but actual deployment scenarios will often involve human users in
the loop—whether it be clinicians, scientists, or engineers—whose individual, group-wise, and/or
collective beliefs may evolve over time. Designing generalizable ML systems that can communi-
cate uncertainty, justify their reasoning, and adapt to human feedback remains an open and urgent

challenge.

Active Offline-Online Learning. In Chapters 5-6, we considered optimization problems in the
offline setting, where the oracle objective function is assumed to be completely inaccessible during
optimization. However, such a strict assumption may not necessarily be the case—for instance, we
may be able to empirically test a small number of candidate designs in the laboratory before a sub-
sequent round of optimization, or may even be able to run more computationally expensive simu-
lations to arrive at better approximations of the true fitness of a proposed design (Swanson et al.,
2025; Ghareeb et al., 2025; Narayanan et al., 2024; Laurent et al., 2024). Such experimental settings
are common in active learning (Hernandez-Garcia et al., 2024; Li et al., 2022b,a; Wu et al., 2023;
Palizhati et al., 2022; Li et al., 2024), where the challenge is not only sampling which designs to
evaluate, but also when to sample and how to best allocate the limited oracle objective query bud-
get. In these settings, more complex problem formulations—such as multi-fidelity optimization

(Hernandez-Garcia et al., 2024; Li et al., 2022b), Markov decision processes (Fang et al., 2017), and
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multi-armed bandits(Ganti and Gray, 2013)—may admit solutions that better generalize to this
setting. Future work may consider adapting the methodology introduced in this dissertation to

such temporally extended and partially observed environments.

Incorporating Prior Knowledge in Optimization. Chapters 3-4 highlight the utility of prior
knowledge in learning better predictive machine learning models. Given the problem formula-
tions described in Chapters 5-6, a natural question is whether prior knowledge could improve
the performance of backbone optimization methods in the offline setting. More explicitly, recent
work has shown that large language models can act as effective black-box optimizers through it-
erative prompting (Yang et al., 2024a; Ma et al., 2024; Guo et al., 2024; Qiu et al., 2025; Hong et al.,
2025). Given that LLMs also have the impressive ability to synthesize prior domain knowledge in
the form of unstructured text, future work might explore how LLMs may be used to better guide

offline optimization through contextualizing relevant domain knowledge (Liu et al., 2024).

Safety and Robustness of Digital Twins. Digital twins are virtual representations of a physical
system or process that can be used to simulate how real-world interventions might affect the mod-
eled system Gupta et al. (2024). In healthcare and biology, digital twins are computational mod-
els of a specific patient or biological system that integrate clinical, physiological, and behavioral
data to mirror the state of the patient and how they may evolve over time (Wu and Koelzer, 2024;
Barber et al., 2022; Laubenbacher et al., 2022). Recent work has explored how digital twins can be
used for counterfactual treatment effect estimation (Holt et al., 2024; Das et al., 2023; Qian et al.,
2021), prediction of immune system perturbations (Laubenbacher et al., 2022), clinical trial simu-
lations (Wang et al., 2024b; Das et al., 2023), and pharmacokinetic modeling (Mujahid et al., 2024;
Visentin et al., 2014). Such digital twins may therefore play a role in in silico biomedical optimiza-

tion experiments analogous to those discussed in Chapters 5-6.

However, even state-of-the-art digital twins are rarely perfect models of the underlying physical
system: historical patient observations and therapeutic interventions represent only a small frac-
tion of the space of possible input perturbations to a digital twin. Furthermore, certain patient

populations can be systemically underrepresented in clinical datasets, making it challenging to
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build accurate and robust models of minority-specific pathophysiologic processes. As a result, it is
possible (and frequently the case) that digital twins may fail to generalize in clinical use cases. For
example, Zhu et al. (2025) and Guan et al. (2025) reported that covariate shifts across hospitals
can cause patient models to generalize poorly in out-of-distribution clinical environments. Dig-
ital twins trained on pre-pandemic patient data often saw their performance collapse during the
COVID-19 pandemic (Kagerbauer et al., 2024). Such miscalibration can misguide clinical decisions
and may benefit from designing better digital twins that are aligned with clinical knowledge, and

methods to constrain when and where digital twin-based predictions can be trusted.

In conclusion, this dissertation has argued for and demonstrated the value of machine learning
approaches that prioritize robustness, interpretability, and distributional alignment in high-stakes
applications. The methods and insights presented herein are offered as a step toward more trust-
worthy and actionable machine intelligence—one that is not only effective under ideal conditions

but remains reliable, comprehensible, and adaptable in the complexity of the real world.
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APPENDIX A

Clinical Decision Support via Generalist Language Models: Additional Experimental

Results

The following appendix contains additional experimental results and discussion for the interested
reader related to the work titled “Evaluating Image Ordering for Acute Patient Presentations via

Language Model Alignment with the ACR Appropriateness Criteria.”
A.1. Prospective Clinician-Al Study: Additional Discussion and Results

In this section, we offer additional experimental results for our prospective study with U.S. medi-
cal students and emergency medicine resident physicians. The main text of our work describes the
results of our Timed experimental arm, where participants were required to complete the study
at an average rate of no slower than 1 question per minute. We also ran a separate, Untimed ex-
perimental arm, where no constraints were imposed on the rate of completion so long as the study
was completed in one sitting. Participants were randomized in exactly one of the two experimental
arms: of the 30 participants who completed the study, 16 (14) were assigned to the Timed (Un-
timed) arm. On average, participants in the Timed experimental arm completed the study in 36.74
minutes (95% CI: [29.88 — 43.60]), while participants in the Untimed experimental arm completed
the study in 46.80 minutes (95% CI: [33.90 — 59.70]). The overall accuracy of the Timed arm par-
ticipants was 20.4% (95% CI: [17.6% — 23.2%)]), the accuracy of the Untimed arm participants was
20.9% (95% CI: [17.8% — —23.9%]). The performance of language model on the study tasks was

not made available to the study participants.

In Supp. Table A.7 and in the main text, we describe a statistically significant improvement in
the accuracy of ordered diagnostic imaging studies by study participants when LLM-generated
guidance is offered in the Timed experimental arm. Interestingly, we found that the inverse is
true in the Untimed arm: participant accuracy decreased with statistical significance when LLM-
generated guidance was available (3; = —0.089; 95% CI: [-0.170 - -0.009]; p = 0.032). We hypoth-

esize that this may be because participants have more time to carefully think through cases and
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consult external resources in the Untimed arm. The absence of the “pressure” imposed by a time
limit may also have psychological impacts in clinical decision making that are outside the scope
of this work. Regardless, ostensibly paradoxical experimental findings—such as the results in the
Untimed study arm—have been previously reported in related work studying human-computer
interaction with generative Al systems; for example, Dell’Acqua (2022); Dell’Acqua et al. (2023) de-
scribe how Al systems can adversely impact expert performance on specialized tasks under certain
conditions, and Bastani et al. (2025) characterize how generative Al tools deter student learning if
key guardrails are not properly implemented. We believe these results emphasize the importance

of carefully studying how different clinical workflows are affected by generative Al tools.

Supp. Tables A.8-A.10 describe the effect of LLM-generated recommendations on (1) LLM agree-
ment; (2) false positive rate; and (3) false negative rate. For both the Timed and Untimed ex-
perimental arms, we observed that LLM-generated recommendations increased LLM agreement
and did not affect the false positive or false negative rates of image ordering. Interestingly, a
self-reported positive sentiment regarding Al in medicine was associated with lower LLM agree-
ment scores in both the Timed (53 = —0.219; 95% CI: [-0.353 - -0.084]; p = 0.004) and Untimed
(B3 = —0.086; 95% CI: [-0.153 - -0.019]; p = 0.016) experimental arms.
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A.2. Supplementary Figures
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Figure A.1: ACR AC Panel counts in the RadCases dataset. As of June 2024, there are 224 ACR
AC Topics that each have at least one assigned parent ACR AC Panel. Panels are more general
categories for conditions, and there are 11 as of June 2024: Breast, Cardiac, Gastrointestinal, Gyn
and OB, Musculoskeletal, Neurologic, Pediatric, Polytrauma, Thoracic, Urologic, and Vascular. To
illustrate the distribution of conditions present in the RadCases dataset, we plot the counts of each
of these 11 parent ACR AC Panels for the (A) Synthetic; (B) USMLE; (C) JAMA; (D) NEJM; and
(E) BIDMC subsets of the RadCases dataset.
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Figure A.2: Baseline LLM performance on ACR AC Panel classification using the RadCases
dataset. In Figure 3.2b, we evaluate six state-of-the-art large language models (LLMs) on their
ability to correctly assign 1 of 224 ACR AC Topics to an input one-liner. Here, we include analogous
results on the related ACR AC Panel classification task, which queries an LLM to correctly assign
1 of 11 ACR AC Panels to an input one-liner. Because ACR AC Panels are much more coarse-
grained when compared to Topics, a language model’s accuracy on this task can help assess the
model’s ability to identify the general body part or organ system affected by pathophysiology.
However, accuracy on this task is not helpful for ordering image studies, as there is no clear method
for assigning a “correct” imaging study given only an ACR AC Panel. Open-source models are
identified by an asterisk, and the best (second best) performing model for a RadCases dataset
partition is identified by a dagger (double dagger). Error bars represent £95% CI over n = 5
independent experimental runs.
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Figure A.3: Retrieval-augmented generation (RAG) performance versus retriever algorithm. To
optimize RAG for LLM accuracy on the ACR AC Topic classification task, we investigated the use
of 8 different retrieval algorithms to use in RAG: (1) Random, which randomly documents from
the corpus over a uniform probability distribution; (2) Okapi BM25 bag-of-words retriever; (3)
BERT and (4) MPNet trained on unlabeled, natural language text; (5) RadBERT from fine-tuning
BERT on radiology text reports; (6) MedCPT leveraging a transformer trained on PubMed search
logs; and (7) OpenAl (text-embedding-3-large) and (8) Cohere (cohere.embed-english-v3)
embedding models from OpenAl and Cohere for Al Using (a) Claude Sonnet-3.5 and (b) Llama
3, we retrieve k = 8 documents from the ACR AC narrative guidelines corpus using each retriever,
and compare each method against baseline ACR AC Topic accuracy achieved by each model. Error
bars represent 95% CI over n = 5 independent experimental runs.

141



—
()
o

In-Context Learning (Claude Sonnet-3.5)

\O
[«
1

*%

x©

S
L
*

kkk kkk

~
=]
1
»

N
S
1
i

AR g

>~
o
1

w
(e}

1
o,

N
(=]

L
s,

Accuracy on ACR AC Topics
Q1
o

—_
o

1
CuCn]

A T T T T T T ..,

AT T H g

Al

oL | E NiEl= | E
Synthetic JAMA NEJM BIDMC
(b)
90 In-Context Learning (Llama 3)
801 **** **i*;;***
70+ ok &

*kk

o
S
1
»
=

*
*
*

W s
S o
L
o,

N
(=]
L

—_

[e]
L

o

Accuracy on ACR AC Topics
Q1
o

A T T T T T T

A T T T T T
A Y

Mkl

Synthetic USMLE

o
L
I
1

JAMA NEJM BIDMC

[CJ NoICL BN Random BM25  EE BERT  E= RadBERT
E3 MPNet EEH MedCPT EE OpenAl Cohere

Figure A.4: In-context learning (ICL) performance versus retriever algorithm. To optimize ICL
for LLM accuracy on the ACR AC Topic classification task, we investigated the use of 8 differ-
ent retrieval algorithms to use in ICL identical to those explored in RAG (see caption of Supp.
Fig. A.3). Using (a) Claude Sonnet-3.5 and (b) Llama 3, we retrieve £ = 4 example one-liner/Topic
pairs from the RadCases-Synthetic dataset corpus using each retriever, and compare each method
against baseline ACR AC Topic accuracy achieved by each model. Note that a separate syntheti-
cally generated dataset (generated using Meta Llama 2 instead of OpenAl GPT-3.5) was used to
evaluate ICL on the RadCases-Synthetic dataset to avoid data leakage. Error bars represent £95%
CI over n = 5 independent experimental runs.
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Figure A.5: In-context learning (ICL) performance versus retriever budget. Using the subjec-
tively best retriever algorithm evaluated in Supp. Fig. A.4 (i.e. the MedCPT retriever), we ablated
the number of ICL examples retrieved by the retriever to pass as context to Claude Sonnet-3.5. Note
that the purple solid, blue medium-dashed, black long-dashed, green dotted-dashed, and red dot-
ted horizontal lines correspond to the baseline, no-ICL accuracy scores of Claude Sonnet-3.5 on
the Synthetic, USMLE, JAMA, BIDMC, and NEJM subsets of the RadCases dataset, respectively.
For the USMLE, JAMA, and NEJM subsets, we find that the performance of the model increases
as the number of ICL examples increases from k = 1 to k = 128. Note that a separate synthetically
generated dataset (generated from Meta Llama 2 instead of OpenAI GPT-3.5) was used to evaluate
ICL on the RadCases-Synthetic dataset to avoid data leakage. Error bars represent £95% CI over
n = 5 independent experimental runs.
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Figure A.6: Chain-of-thought (COT) prompting performance versus reasoning algorithm. To
optimize COT for LLM accuracy on the ACR AC Topic classification task for both (a) Claude
Sonnet-3.5 and (b) Llama 3, we investigated 4 different COT reasoning methods: (1) Default rea-
soning, which does not specify any particular reasoning strategy for the LLM to use; (2) Differen-
tial diagnosis reasoning, which encourages the model to reason through a differential diagnosis to
arrive at a final prediction; (3) Bayesian reasoning, which encourages the model to approximate
Bayesian posterior updates over the space of ACR AC Topics based on the clinical patient presen-
tation; and (4) Analytic reasoning, which encourages the model to reason through the pathophys-
iology of the underlying disease process. We compare each method against the baseline ACR AC
Topic accuracy achieved by each model. Error bars represent £95% CI over n = 5 independent
experimental runs.
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Figure A.7: Combining in-context learning (ICL) and chain-of-thought (COT). We observed
that ICL (using the MedCPT retriever) and COT (using the Default reasoning strategy) were ef-
fective prompting strategies to improve the performance of Claude Sonnet-3.5 and/or Llama 3 in
Supp. Figures A.4 and A.6. We combine both of these strategies together to evaluate if the combi-
nation of these techniques together could further improve model performance of both (a) Claude
Sonnet-3.5 and (b) Llama 3. We compare each method against the baseline, ICL-only, and COT-
only ACR AC Topic accuracy achieved by each model. Error bars represent +95% CI over n = 5
independent experimental runs.
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Figure A.8: Model fine-tuning (MFT) algorithm evaluation with Llama 3. We evaluate 5 dif-
ferent fine-tuning experimental setups in our MFT experiments: quantized low-rank adaptation
(QLoRA) with a rank of (1) » = 16 and (2) r = 512; low-rank adaptation (LoRA) with a rank of
(3) r = 8 and (4) r = 64; and (5) Full Rank model fine-tuning. We use an «a scaling value of 8
for all QLoRA and LoRA experiments. To construct the MFT training dataset, we use either (a)
all n = 156 labeled one-liners from the RadCases-Synthetic dataset; or (b) a Mixed dataset includ-
ing 50 randomly selected cases from each of the 5 RadCases dataset subsets for a total of n = 250
labeled one-liners. The first scenario simulates a setting where we can only fine-tune models on
synthetically generated data due to privacy concerns, and the latter scenario simulates a setting
where we are able to train on real patient data sampled from the relevant distribution(s) of inter-
est. Note that a separate synthetically generated dataset (generated from Meta Llama 2 instead of
OpenAl GPT-3.5) was used to fine-tune the base model for evaluation on the RadCases-Synthetic
dataset to avoid data leakage. Error bars represent +95% CI over n = 5 independent experiments.
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Figure A.9: Evaluating medical foundation models fine-tuned on Llama LLMs. Separate from
the results presented in Supp. Figure A.8, an alternative approach to model fine-tuning is to in-
stead leverage language models fine-tuned on large corpuses of domain-specific medical text. Such
foundation models include BioMedGPT-7B (Zhang et al., 2024); MeLLaMA-70B (Xie et al., 2024);
and Meditron-70B (Chen et al., 2023d). We evaluate their accuracies on predicting correct ACR
AC Topic labels; none of the three medical foundation models evaluated outperformed the base
Meta Llama 3 70B model with statistical significance on any of the RadCases datasets. Our re-
sults are consistent with findings reported by prior work (Jeong et al., 2024; Dorfner et al., 2024;
Hager et al., 2024; Maharjan et al., 2024) and highlight the challenge in fine-tuning language mod-
els specifically for RadCases and other medical tasks. Error bars represent £95% CI over n = 5
independent experimental runs.
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Figure A.10: Ablating the number of ACR AC Topic predictions in retrospective study of
clinician-ordered versus LLM-ordered imaging studies. In Figure 3.6, we show the results of
our retrospective study evaluating diagnostic imaging orders of both LLMs and clinicians—both
Claude Sonnet-3.5 and Llama 3 were prompted to predict the single m = 1 best ACR AC Topic
for an input patient description. Here, we vary the maximum number m of ACR AC Topic pre-
dictions requested from each language model on the z-axis. We compare the (a) accuracy scores;
(b) false positive rates (i.e., the rate at which a patient received at least one unnecessary imaging
recommendation); (c) false negative rates (i.e., the rate at which a patient should have received an
imaging workup but did not); (d) F; scores; (e) number of recommended imaging studies; and
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Case 3/50

epilepticus.

What imaging study would you order for this patient? If no imaging is indicated, select "None".

@ 0 Hours 49 Minutes 25 Seconds

The pt is a 41 year-old woman who presents as a transfer from OSH, intubated, for concern of status

l.e., CT, MRI, Radiography, None, .

TT paranasar SIuSes Witout 1V Contrast
CT paranasal sinuses without and with IV contrast

CT pelvis and hips with IV contrast

LLM Guidance

@ A large language model (LLM) has identified the
following 3 ACR Appropriateness Criteria topics that may
describe the patient's presentation. The topics are listed

from most to least relevant according to the LLM. Click
on a topic to see the evidence-based imaging
recommendations from the ACR for each of the topics.
Legend

[] usually appropriate

[] May be appropriate

[ usually not appropriate

[] pisputedfinsufficient Evidence

¥ Altered Mental Status, Coma, Delirium, and
Psychosis

CT pelvis and hips without IV contrast Imaging Stuchy Radlation
CT head without IV contrast eee
CT pelvis and hips without and with IV contrast MRI head without and with IV
None
CT pelvis with IV contrast contrast
MRI head without IV contrast None
CT pelvis with bladder contrast (CT cystography) MRI head with IV contrast i
CT pelvis without IV contrast CT head with IV contrast eee
CT pelvis without and with IV contrast CT head without and with IV Yy
contrast

CT sacroiliac joints and cervical and lumbar spine with IV contrast
CT sacroiliac joints and cervical and lumbar spine without IV contrast

CT sacroiliac joints and cervical and lumbar spine without and with |V contrast » Seizures and Epilepsy

CT sacroiliac joints and cervical and thoracic spine with IV contrast MintensivelGarainit Patients

Figure A.11: User interface for prospective study. The LLM is asked to predict up to three ACR
Appropriateness Criteria (AC) Topics that may be relevant for the patient case, and the table of
corresponding ACR AC recommendations is displayed as reference to the user. In questions where
LLM guidance is not made available, the right column does not show any recommendations and
instead shows “LLM guidance is not available for this patient scenario.”
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A.3. Supplementary Tables

Table A.1: Commonly appearing ACR AC Topics in the RadCases dataset. We list the most com-
monly appearing ACR AC Topics for each of the RadCases datasets. The topics are listed as “Panel
> Topic,” where “Topic” is the ACR AC Topic and “Panel” is the parent ACR AC Panel.

Synthetic Subset (7tota1 = 156) Count (%)
Cardiac > Chest Pain-Possible Acute Coronary Syndrome 10 (6.41)
Cardiac/Vascular > Suspected Pulmonary Embolism 8 (5.13)
Gyn and OB > Acute Pelvic Pain in the Reproductive Age Group 6 (3.85)
Neurologic > Low Back Pain 6 (3.85)
Breast > Breast Pain 5(3.21)
USMLE Subset (7t = 164) Count (%)
Neurologic > Altered Mental Status, Coma, Delirium, and Psychosis 17 (10.4)
Neurologic > Headache 12 (7.32)
Cardiac > Chest Pain-Possible Acute Coronary Syndrome 9 (5.49)
Polytrauma > Major Blunt Trauma 9 (5.49)
Cardiac > Dyspnea-Suspected Cardiac Origin 8 (4.88)
JAMA Subset (na = 971) Count (%)
Neurologic > Orbits, Vision, and Visual Loss 280 (28.8)
Neurologic > Neck Mass/Adenopathy 48 (4.94)
Neurologic > Staging and Post-Therapy Assessment of Head and Neck Cancer 42 (4.33)
Neurologic > Headache 31 (3.19)
Gastrointestinal > Acute Nonlocalized Abdominal Pain 28 (2.88)
NEJM Subset (1t = 159) Count (%)
Neurologic > Altered Mental Status, Coma, Delirium, and Psychosis 11 (6.92)
Neurologic > Orbits, Vision, and Visual Loss 8 (5.03)
Gastrointestinal > Acute Nonlocalized Abdominal Pain 7 (4.40)
Neurologic > Headache 7 (4.40)
Urologic > Renal Failure 7 (4.40)
BIDMC Subset (1t = 139) Count (%)
Cardiac > Chest Pain-Possible Acute Coronary Syndrome 13 (9.35)
Neurologic > Head Trauma 11 (7.91)
Gastrointestinal > Acute Nonlocalized Abdominal Pain 10 (7.19)
Neurologic > Altered Mental Status, Coma, Delirium, and Psychosis 7 (5.04)
Cardiac > Dyspnea-Suspected Cardiac Origin 6 (4.32)
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Table A.2: Comparing the RadCases dataset with real patient case summaries. To validate our
RadCases dataset, we first had 3 independent U.S. attending physicians review a set of 50 true
one-liners and confirm that they are representative of real-world patient case summaries used
in clinical practice. We then computed the (1) Maximum and (2) Mean Similarity Score us-
ing the NV-Embed-v2 Retriever (Lee et al., 2025; Moreira et al., 2024) between each of the Rad-
Cases datasets and a dataset of true one-liners derived from real patient cases. We also computed
the average (3) Perplexity according to GPT-2 Large Medical (Radford et al., 2019; Gabarin, 2023;
Jinetal, 2019); and (4) the average number of tokens per one-liner according to the GPT-40 tok-
enizer (OpenAl et al., 2024). We compare RadCases against other corpora such as arXiv computer
science abstracts (arXiv NLP); Wikipedia articles (Wikitext); PubMed articles; and the MedQA
dataset (Jin etal., 2021). Finally, we also compare against Random sentences admission notes
in the MIMIC-IV dataset (Johnson et al., 2023); random sentences from Radiology imaging re-
ports in the MIMIC-IV dataset, Full Admission Notes from the MIMIC-IV dataset; and a separate
Test set of extracted patient one-liners from the MIMIC-IV dataset. Each metric is reported as
Mean?>” I, where [Mean] is the mean metric value, and [95% CI] is the 95% confidence interval.
The best (resp., second best) values in each column—and all values with intersecting confidence
intervals—are bolded (resp., underlined). Our results show that RadCases is a promising set of
simulated patient one-liners compared with other domain-specific text corpora.

Text Source Max Similarity f Mean Similarity ¥ Perplexity Token Count

True One-Liners 100(100—100) 40‘0(38.7—41.3) 115(81.1—148.5) 51‘3(44.2—58.3)

arXiv NLP 13.8(13'7-13'9) 6.09(6'04-6'13) 30_0(29.7-30,2) 171(170-172)

Wikitext 14.3(14.1-14.4) 6.57(6-48-6.66) 134(127-141) 1071(99-103)

PubMed 16'5(16.4—16.6) 8.11(8’04_8'19) 21.5(21.2—21.7) 224(222—227)

MedQA 38_4(38.2—38,6) 25‘1(24.9—25.2) 14.6(14'5_14’7) 161(160—163)
MIMIC-IV Random ~ 31.3(301-326) 19.4(185-204) 624318929) 9 4(20852.0)
MIMIC-IV Radiology ~ 26.7(2>3-280) 16.1(150:17.2) 437(323552) 19 3(16.1-226)
MIMIC-IV Full Note ~ 37.3(365382) 26.1(25626.7) 40.6(390-421)  39()(3040-3390)
MIMIC-IV Test 49 4 (48.8-50.1) 33‘5(33.0-33.9) 317(265-370) 40.1 (38.5-31.8)
RadCases Synthetic ~ 52.2(1.0-53:4) 35.3(347-359) 60.3(478728) 23 ((227-244)
RadCases USMLE 47 .4(45.9-48.9) 29‘9(29.0—30.9) 14.0(12.9—15.2) 21.0(20.1—21.8)
RadCases JAMA 43_1(42.6—43.7) 27‘9(27.5—28.2) 20_0(19.2—20.8) 33‘0(32.3—33.8)
RadCases NEJM 42'3(41.2-43.4) 27_3(26.6-28.1) 15.0(14.1-16.0) 51.1(49-1-53.2)
RadCases BIDMC 65-1(62.1-68.2) 36.2(35'4-37'2) 173(140-207) 45.8 (42.0-50.0)
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Table A.3: Binary classification of ACR AC corpus relevancy for diagnostic image ordering. In
our main text, we limit our evaluation of language models to patient one-liners that can be (and are)
assigned a ground-truth ACR AC Topic label. This implicitly assumes that we can filter out the pa-
tient one-liners where no ACR AC Topic is applicable. Here, we assess the ability of language mod-
els to perform this filtering task: we evaluate both Claude Sonnet-3.5 and Llama 3 on the binary
classification task of determining whether the corpus of ACR AC Topics contains at least one ACR
AC Topic that is applicable to an input patient one-liner. Each metric is reported as [Mean®" 1],
where [Mean] is the mean metric value (2veraged over Srandomseeds) and [95% CI] is the 95% confi-

dence interval.

Claude Sonnet-3.5 Synthetic USMLE JAMA NEJM BIDMC
Balanced Accuracy T 97_3(96.1-98.5) 92.5(91.5—93.4) 88_0(87.7-88.3) 81.6(80'3_830) 93'9(92.2-95.6)
F; Score T 97.3(96.2-98.4) 92'9(91.6-94,3) 86.5<86'1'86'9) 78.9(76'5'81'4> 95‘9(94.5-97.3)
False Positive Rate | 0.1(00:0.2) 6.4(5:27:6) 1.1(0.219) 8.1(6:597) 8.4(7:0-97)
False Negative Rate | 5.3(3.1-7.5) 8.5(6'7-10'2) 22.9(22.4-23.4) 28.6(27'0-30'2> 3.7(1.5-5.9)
Llama 3 Synthetic USMLE JAMA NEJM BIDMC
Balanced Accuracy »]\ 99'0(98.6—993) 94.9(93.6—96.2) 92.2(91.9-92.4) 80.2(79'7_80'& 87.4<87'4_87'4)
F; Score 0 99_0(98.7—99.3) 95.6(95'0_%'3) 92_5(92.4-92.6) 77'9(77.6—78.2) 87.6<87'5_87‘6)
False Positive Rate | 0.0(0-0-0.0) 7.3(47-99) 3.8(3343) 110001118 g 1(9191)
False Negative Rate |~ 2.1(0:933) 3406137 11,6015117) 28 (282:290) 14 1(16.0-16.2)

Table A.4: Simulated patient demographics for retrospective study assessing LLMs versus clin-
ician performance. In our retrospective study described in the main text, we analyzed the per-
formance of autonomous LLM agents versus clinicians in ordering diagnostic imaging studies for
simulated patient cases crafted from anonymized, de-identified discharge summaries from the
MIMIC-IV dataset from Johnson et al. (2023). To better simulate actual patient cases, we manually
annotated the patient cases to include simulated patient ages and genders if they were removed
during the original de-identification process. The resulting distributions of these simulated patient
variables are shown.

Gender Count (%)
Male 63 (53.8)
Female 54 (46.2)

Age Decade (Years) Count (%)
g

10-19 2 (1.71)
20-29 5(4.27)
30-39 7 (5.98)
40-49 15 (12.8)
50-59 27 (23.1)
60-69 30 (25.6)
70-79 27 (23.1)
80-89 4 (3.42)
Total Number of Patient Cases 117
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Table A.5: Simulated patient demographics for prospective study assessing clinician perfor-
mance with versus without LLM-based assistance. In our prospective clinical study, we ana-
lyzed the performance of clinicians both with and without LLM-based imaging recommendations
in ordering diagnostic imaging studies for simulated patient one-liners. These one-liners were
crafted from anonymized, de-identified discharge summaries from the MIMIC-IV dataset from
Johnson et al. (2023). To better simulate actual patient cases, we manually re-introduced simu-
lated patient ages and/or genders if they were removed during the original de-identification pro-
cess. The resulting distributions of these simulated patient variables are shown above.

Gender Count (%)
Male 26 (52.0)
Female 24 (48.0)

Age Decade (Years) Count (%)
10-19 2 (4.00)
20-29 3 (6.00)
30-39 2 (4.00)
40-49 7 (14.0)
50-59 8 (16.0)
60-69 12 (24.0)
70-79 13 (26.0)
80-89 3(6.0)

Total Number of Patient Cases 50
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Table A.6: Study participant demographic information in prospective study assessing clinician
performance with versus without LLM-based assistance. Demographic and self-reported pre-
study questionnaire information of the clinician study participants in our prospective study de-
tailed in the main text are summarized here. Column (1) describes the participants randomized
to the Timed study arm described in Section A.1, and column (2) describes the participants ran-
domized to the Untimed study arm in Section A.1.

(1) (2)
Gender Count (%) Count (%)
Male 4 (25.0) 9 (64.3)
Female 12 (75.0) 5 (35.7)
Stage of Medical Training Count (%) Count (%)
Third- or Fourth- Year U.S. Medical Student 14 (87.5) 9 (64.3)
U.S. Emergency Medicine Resident Physician 2 (12.5) 5(35.7)
Prior Experience Using Al in Everyday Life Count (%) Count (%)
No Experience or A Little Experience 8 (50.0) 9 (64.3)
Some Experience or A Lot of Experience 8 (50.0) 5 (35.7)

Overall Sentiment of the Use of Al in Healthcare Count (%) Count (%)

Negative 2 (12.5) 2 (14.3)
Neutral or Positive 14 (87.5) 12 (85.7)

Table A.7: Accuracy scores of clinicians with and without LLM-generated recommendations.
The treatment effect of offering LLM-generated diagnostic imaging recommendations is analyzed
according to (3.1). The accuracy score is a binary dependent variable equal to 1 if the clinician
orders a ground-truth imaging study according to the ACR Appropriateness Criteria, and 0 oth-
erwise. The regression coefficients are shown as mean (standard error). Columns (1) and (2)
correspond to the timed experimental arm where participants are required to answer questions at
an average rate no slower than 1 question per minute, while columns (3) and (4) correspond to the
separate untimed experimental arm where participants can answer questions at their own pace in
one sitting. Odd- (even-) numbered columns do not (do) factor in the fixed effects of participant
self-reported personal experience with Al and personal sentiment on the use of Al in medicine,
which are both modeled as binary variables, into the regression model. *Denotes p < 0.05.

(1) (2) (3) (4)

. . 0.081*  0.081* -0.089* -0.089*
LLM Guidance Available (0.028) (0.028) (0.037) (0.037)
p Value  0.011 0.011 0.032 0.032

R2 0.138 0.138 0.121 0.121
Number of Observations 800 800 700 700
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Table A.8: LLM agreement scores of clinicians with and without LLM-generated recommen-
dations. The treatment effect of offering LLM-generated diagnostic imaging recommendations is
analyzed according to

Zs.q = Bo + (81 * WithLLMGuidance, ;) + (B2 * PriorExperienceUsingAl )
+ (B3 = PositiveSentimentAboutAly) + 6, + xs + €5 4

where z; , is the agreement score represented as a binary dependent variable equal to 1 if the clini-
cian and LLM recommend the same imaging study and 0 otherwise; 6, is the fixed effects of study
question g; x is the fixed effects of study participant s; and ¢, , is the error term. All the inde-
pendent variables are binarized to take on values in {0, 1}. The regression coefficients are shown
as mean (standard error). Column (1) corresponds to the timed experimental arm where partic-
ipants are required to answer questions at an average rate no slower than 1 question per minute,
while column (2) corresponds to the separate untimed experimental arm where participants can
answer questions at their own pace in one sitting. *Denotes p < 0.05. **Denotes p < 0.01.

(1) (2)
. . 0.141**  0.107**
LLM Guidance Available (0.043)  (0.031)

p Value  0.005 0.004

0.043 -0.169**

(0.051)  (0.055)
p Value 0.407 0.009

" . -0.219**  -0.086*

Positive Sentiment About Al (0.063)  (0.031)
p Value 0.004 0.016

R2  0.380 0.365
Number of Observations 800 700

Prior Experience Using Al
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Table A.9: False positive rates of clinicians with and without LLM-generated recommendations.
The treatment effect of offering LLM-generated diagnostic imaging recommendations is analyzed
according to (3.1). A false positive is a binary dependent variable equal to 1 if the clinician orders
an unnecessary imaging study according to the ACR Appropriateness Criteria, and 0 otherwise.
The regression coefficients are shown as mean (standard error). Columns (1) and (2) correspond
to the timed experimental arm where participants are required to answer questions at an average
rate no slower than 1 question per minute, while columns (3) and (4) correspond to the sepa-
rate untimed experimental arm where participants can answer questions at their own pace in one
sitting. Odd- (even-) numbered columns do not (do) factor in the fixed effects of participant self-
reported personal experience with Al and personal sentiment on the use of Al in medicine, which
are both modeled as binary variables, into the regression model.

(1) (2) (3) (4)

. ) 0.008 0.008 -0.005  -0.005
LLM Guidance Available (0.009) (0.009) (0.011) (0.011)
p Value  0.412 0.418 0.633 0.630

R2  0.057 0.054 0.061 0.059
Number of Observations 800 800 700 700

Table A.10: False negative rates of clinicians with and without LLM-generated recommenda-
tions. The treatment effect of offering LLM-generated diagnostic imaging recommendations is
analyzed according to (3.1). A false negative is a binary dependent variable equal to 1 if the clin-
ician orders no imaging study even when diagnostic imaging is warranted according to the ACR
Appropriateness Criteria, and 0 otherwise. The regression coefficients are shown as mean (stan-
dard error). Columns (1) and (2) correspond to the timed experimental arm where participants
are required to answer questions at an average rate no slower than 1 question per minute, while
columns (3) and (4) correspond to the separate untimed experimental arm where participants can
answer questions at their own pace in one sitting. Odd- (even-) numbered columns do not (do)
factor in the fixed effects of participant self-reported personal experience with Al and personal
sentiment on the use of Al in medicine into the regression model.

(1) (2) 3) (4)

. . -0.019  -0.019 0.001 0.001
LLM Guidance Available (0.023) (0.023) (0.021) (0.021)
p Value  0.440 0.431 0.952 0.951

R2 0221 0.180 0.227 0.218
Number of Observations 800 800 700 700
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Table A.11: Study participant pre-study survey results. Study participants were asked to com-
plete an anonymized survey of multiple-choice questions (tabularized below) prior to beginning
the study. The results of (Q1) and (Q5) were used to define the PriorExperienceUsingAl, and
PositiveSentimentAboutAl, binary variables used in the regression models, respectively. For a
subject s, PriorExperienceUsingAlL is equal to 1 if the subject answers “Some experience” or “A lot
of prior experience” to (Q1) and 0 otherwise. Similarly, PositiveSentimentAboutAl, is equal to 1 if
the subject answers “Neutral”, “Somewhat positive”, or “Very positive” to (Q5) and 0 otherwise.

(Q1) In your personal life, how much prior experience do you have with using ma- Count (%)
chine learning models, such as ChatGPT or other Al tools?

No prior experience 2(7.4)
A little prior experience 17 (63.0)
Some prior experience 8 (29.6)
A lot of prior experience 0 (0.0)

(Q2) In your personal role, how much prior experience do you have with using Count (%)
machine learning models, such as ChatGPT or other Al tools?

No prior experience 23 (85.2)

A little prior experience 4 (14.8)

Some prior experience 0 (0.0)

A lot of prior experience 0 (0.0)
(Q3) AI can help improve patient care and clinical workflows in the future. Count (%)

I strongly disagree 0 (0.0)

I somewhat disagree 0 (0.0)

I am neutral 1(3.7)

I somewhat agree 15 (55.6)

I strongly agree 11 (40.7)
(Q4) I am scared about the potential unknown impact of Al on healthcare. Count (%)

I strongly disagree 1(3.7)

I somewhat disagree 8 (29.6)

I am neutral 2(74)

I somewhat agree 13 (48.2)

I strongly agree 3 (11.1)
(Q5) Overall, how positive or negative do you feel about the potential use of Alin Count (%)
medicine?

Very negative 0 (0.0)

Somewhat negative 3(11.1)

Neutral 2(74)

Somewhat positive 18 (66.7)

Very positive 4 (14.8)
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APPENDIX B

Clinically Derived Priors for Medical Imaging Analysis: Additional Discussion

The following appendix discusses two co-authored works principally led by collaborators, titled
(1) “A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis” pub-
lished in the Proceedings of the 2024 Conference of Neural Information Processing Systems as
a spotlight work (Yang et al., 2024c); and (2) “A Concept-based Interpretable Model for the Di-
agnosis of Choroid Neoplasias using Multimodal Data” published in Nature Communications
(Wu et al., 2025). Because these works have been discussed in detail in other dissertations by co-
authors, the discussion based on these two manuscripts in this appendix will be brief, and pri-
marily focus on how they relate to experimental findings reported in the main text. We refer the

interested reader to Yang et al. (2024c) and Wu et al. (2025) for additional details.
B.1. Deriving Interpretable Features

Recall that a core focus of this dissertation is the construction of interpretable-by-design machine
learning systems in order to improve the generalizability of predictions across different patient
populations. In Chapter 3, we demonstrated how interpretable patient representations could be
derived from consensus medical guidelines endorsed by expert clinicians; in Chapter 4, we sep-
arately used clinical knowledge from our understanding of disease processes to derive the inter-
pretable representation space. However, other strategies exist on how to best derive interpretable

feature spaces for representing input patient data.
B.2. Clinical Motivation

In Yang et al. (2024c), work led by co-author Yue Yang explores how concept bottleneck models
(Koh et al., 2020) can be used to construct generalizable medical image classification models that
are robust to distribution shifts. It is well-documented that ML models often fail in unexpected
ways due to overfitting on confounding variables, such as patient sex, race, and environment that
do not causally affect the underlying pathophysiology of disease. As a result, existing deep net-

works can be highly sensitive to domain shifts. To address this issue as it pertains to the diagnosis
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of disease from chest X-rays and medical photographs of skin lesions, Yang et al. (2024c) investi-

gates how to build more robust medical image classifiers.

Separately in Wu et al. (2025), work led by co-author Yifan Wu specializes to the problem of di-
agnosing rare ocular diseases. Making such diagnoses is a critical challenge in ophthalmology be-
cause there are a very limited number of clinical specialists with the expertise to diagnose ocular
cancers and distinguish uveal melanoma, ocular hemangioma, and metastatic carcinoma. Clini-
cally, it is important to distinguish these three diseases because they are individually associated
with different prognoses and treatment strategies even though they can present similarly in prac-
tice. Furthermore, the scarcity of data on rare diseases makes it challenging to develop generaliz-
able and accurate machine learning methods for diagnosing these diseases. To this end, Wu et al.
(2025) explores how interpretable feature representations of multimodal ocular data can not only
be used to build more accurate and generalizable predictive ML models, but also improve the pre-

dictive accuracy of non-specialist physicians in diagnosing rare eye diseases.
B.3. Methods

Yang et al. (2024¢) introduces Knoledge Bottlenecks (Knobo), a novel class of concept bottleneck
models that incorporate knowledgeable priors derived from foundational medical knowledge to
construct the space of concepts used to represent input imaging data. At a high-level, KnoBo takes
as input a pretraining dataset Dpre = { (I, tx) W7 of image-text pairs and an annotated dataset
Dirain = {(Ii, yi) } o245 of images I;; € Z labeled by their corresponding disease y € ). KnoBo
first constructs a set of concepts C by iteratively querying a language model conditioned on the
label space ) and a corpus of relevant medical documents to learn from and perform retrieval
on. For each concept ¢ € C, a corresponding feature encoder f. : Z — [0,1] is learned by first
prompting a language model to map a text input ¢ to a binary output indicating whether ¢ contains
¢, and then learning f. as a binary classifier using the mapped dataset D = {(Ix, d(c € tx)) o
After pretraining, each image I can then be mapped at inference time to an interpretable feature

vector [0, 1]/ with dimensions representing the probability of the presence of each semantically

meaningful concept in C. A linear function can then be learned via the traditional cross entropy
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loss function to map vectors in [0, 1] Il to a vector of logits over the label space via training on Diyain.

Altogether, the final pipeline can be written as
Ypred = softmax (fe(I) - WT)

where f¢ : 7 — [0, 1]/l is a shorthand contraction of all learned f, that collectively maps an input
image to all |C| concept activations, and W is the || x |C| weight matrix of the final linear function.
In this way, we are able to construct a set of interpretable, semantically meaningful features C

directly from unstructured, domain-specific natural language using LLM-based pipelines.

Wu et al. (2025) introduces Multimodal Medical Concept Bottleneck Models (MMCBM), which
share a similar methodology with KnoBo except for a few key modifications. First, the input image
space 7 is inherently multimodal, meaning that the set of feature encoders f. scales with not only
the number of relevant concepts |C|, but also the number of distinct imaging modalities available
as input. Secondly, to overcome the fact that data for MMCBM pre-training is inherently limited
in the rare-disease setting, the set of concepts C is manually refined by expert clinicians prior to
learning the concept encoders f.. This allows us to manually refine the space of concepts learned

from natural language alone using the knowledge available from rare disease experts.
B.4. Main Results

In Yang et al. (2024c), we find that KnoBo significantly improves out-of-distribution (OOD) gen-
eralization across both chest X-ray and skin lesion multiclass image classification tasks. In com-
prehensive evaluations with explicitly constructed confounding factors, KnoBo outperforms fine-
tuned baselines without significantly sacrificing in-distribution (ID) performance. KnoBo also out-
performs other interpretable models, and its concept representations were found to be more robust
and effective than standard CLIP-derived features. Altogether, we found that incorporating med-
ically grounded priors directly into model design can help us build more generalizable medical

image classification models.

In Wu et al. (2025), we show that the MMCBM method matches and sometimes even outperforms
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traditional black-box baselines—especially when tested on a dataset with a known domain shift
(i.e., patients from a different hospital setting). In this case, MMCBM was able to generalize to the
new patient population in a zero-shot manner more effectively than existing methods. Further-
more, clinician users could interactively inspect and adjust concept activations in real-time to fur-
ther boost model performance via human-in-the-loop inference. Our results suggest that MMCBM

achieves strong performance in diagnosing rare ocular diseases compared to baseline methods.
B.5. Discussion

Here, we relate Yang et al. (2024c); Wu et al. (2025) to the main text of the dissertation (partic-
ularly Chapters 3-4). While the implementation details may vary between the works on build-
ing interpretable-by-design models discussed in this dissertation (i.e., Yao etal. (2025a, 2023);
Wu et al. (2025); Yang et al. (2024c)), they all share a fundamental core hypothesis: interpretable-
by-design ML models aligned with human knowledge are more generalizable. In Yao et al.
(2025a), the concept set C is the space of American College of Radiology (ACR) Appropriateness
Criteria (AC) Topics explicitly constructed from parsing the ACR AC medical guidelines; we use
an LLM to map input patient descriptions to the concept space. In Yao et al. (2023), the concept
set C is the set of clinically derived phenotypes (CDPs) and image-derived phenotypes (IDPs) ex-
tracted from multimodal patient data; we query tabular CDPs from health record databases and
single-task image segmentation models to extract IDPs. In Yang et al. (2024c) and Wu et al. (2025),
the concept space C is constructed using state-of-the-art language models given access to both the
label space Y of the prediction task and a corpus of unstructured medical text; we use CLIP-based
encoders (Radford et al., 2021; Wang et al., 2022; Eslami et al., 2023) to map input images to the
concept space. Similarly, the set of concepts C is transformed into a label prediction via tabular
lookup in Yao et al. (2025a); a simple non-linear multilayer perceptron in Yao et al. (2023); and a
linear layer in Yang et al. (2024c) and Wu et al. (2025). In this way, the primary differences be-
tween the methodologies introduced in these works are (1) how the intermediate concept spaces
C are constructed; (2) the mapping implementation from input space to C; and (3) the mapping

implementation from C to label space.
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APPENDIX C

Adversarial Supervision in Offline Model-Based Optimization: Additional Experimental

Results

The following appendix contains additional experimental results for the interested reader using
GAMBO—our novel algorithm for offline optimization that leverages adversarial supervision to
improve the quality of proposed designs. Specifically, we provide additional experimental results

that help better characterize both the strengths and limitations of GABO and GAGA.
C.1. Additional Design Quality Results

To evaluate the robustness of optimization methods, we report one-shot 90th percentile oracle
scores in Tables C.1-C.2. For each method, all proposed designs are ranked according to the sur-
rogate forward model ((5.5) for Generative Adversarial Bayesian Optimization (GABO) and Gen-
erative Adversarial Gradient Ascent (GAGA)), and the single 90th percentile design according to
this ranking is selected and evaluated using the oracle function. We report the oracle score of this

suboptimal design averaged over 10 seeds.

We found that GABO and GAGA do not propose suboptimal designs that are better than those
proposed by other methods, such as BONET (Krishnamoorthy et al., 2023b), Simulated Annealing
(Kirkpatrick et al., 1983), L-BFGS (Liu and Nocedal, 1989), and ExPT (Nguyen et al., 2023). This
is not surprising, as aSCR is not designed to target this metric (and it is not our primary metric of
interest). Separately for GABO, we also hypothesize that the algorithm’s performance according to
this metric may partially be explained by the limitations of the underlying Bayesian optimization
(BO) optimization algorithm. Because BO is not an iterative first-order algorithm, the designs
proposed by any BO-based algorithm often have high variance in practice—this is indeed what we

observe across all of our experiments, including in Table 5.2 and Supp. Tables C.1-C.2.

Finally, we note that in most applications of offline optimization, the 90th percentile metric—or

any metric that does not use the best proposed design(s)—is not as useful as the other metrics
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assessed where GABO does perform well. This is because in offline optimization tasks with a re-
stricted budget to query the hidden, expensive-to-evaluate oracle function, we are not interested in
“wasting” this limited budget on subpar design candidates. While the 90th percentile and similar
metrics can be helpful to understand the limitations of algorithms, we believe that the alternative
evaluation metrics reported in the main text—namely, the 100th percentile top-1 and top-128 oracle

score metrics—are more useful and practical in assessing each of the optimization algorithms.

Table C.1: Constrained budget (k = 1) suboptimal (90%-ile) oracle evaluation. The oracle score
of the 90th percentile design candidate according to the surrogate across 10 random seeds is re-
ported as mean =+ standard deviation. D (best) reports the top oracle value in the task dataset. The
average rank across all eight tasks is reported in the final table column. Bolded (Underlined) en-
tries indicate the best (second best) entry in the column. *Denotes the life sciences-related discrete
MBO tasks from Design-Bench (Trabucco et al., 2022).

Method Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin  Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -019+19%  —
Grad. -944+209 -547+132 0429+0.023 343+067 7.16+021 -195+0.00 053+020 087+1.08 9.1
L-BFGS  -4.0£0.0 496 £6.64 0547 +0.163 350+0.70 736+092 -1.95+0.00 031+0.00 075+1.66 69
CMA-ES -104+3.0 -435+618 0448+0.068 3.74+0.00 695+1.13 -1.95+0.00 0.60+029 -402+218 7.1
Anneal -132+0.0 9.57£0.66 0.439+0.000 3.654+0.04 7.41+022 -1.95+0.00 0564000 0.96+0.08 6.0
BO -115+23  -562+919 0.552+0.152 142+0.00 580+171 0644001 046+0.18 -369+205 9.6
TuRBO -163+102 -243+66.3 0.563+0.087 1.42+0.00 679+125 0.65+0.00 0.71+001 -323+949 79
BONET -292+22 10.8 + 043 0324 +0.041 3.74+0.00 870+032 0.56+011 0.78+0.00 — 6.0
DDOM -1870+£2693 -710+142 0386+ 0.224 143+0.00 7914029 0.65+0.01 050+0.19 -56.6+79.6 9.6
COM  -3468 +679  -374+230 0346+0.093 3.62+0.00 526+101 060+0.04 0.90+0.01 080+093 96
RoMA  -185+£82 521+139 0500+0.153 358+011 694+111 043+018 041+0.21 -244+216 8.1
BDI  -109 £+ 0.0 093+0.88 0471+£0.000 3.58+0.05 5.62+0.00 049+0.00 076000 -248+£233 9.0
ExPT -231+113 -167+£251 0480+0.091 3.74+0.00 6.70+0.39 0.62+0.04 0.75+0.07 -040=+1.61 6.9
BootGen — -116.8 +85.7 0388 +£0.007 3.60+0.04 7.74+0.56 0.61+0.03 — — 8.8
ROMO -3142 4330 -25.6+231 0354+0247 359+0.08 549+138 0.62+0.04 0424017 -277+521 11.1
GAGA -142+152 -167+81.1 0.546+0.148 322+086 640+1.13 -1.95+0.00 0.89+0.01 0.24+0.20 8.5
GABO -127+10.0 -122+46.1 0467 £0.066 3.56=+1.66 612+122 0.61+008 057+017 0.02=£577 7.9

Table C.2: GABO Adaptive SCR ablation study—Constrained budget (¥ = 1) suboptimal (90%-
ile) oracle evaluation. The oracle score of the 90th percentile design candidate according to the
surrogate across 10 random seeds reported as mean =+ standard deviation. D (best) reports the
top oracle value in the task dataset. Task-averaged method rank is reported in the final column.
*Denotes the life sciences-related discrete MBO tasks from Design-Bench (Trabucco et al., 2022).

GABO « Value Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin  Rank

D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19+1.96 —
a=00 -11.5+£23 -56.2+919 0.552+0.152 1.42+0.00 580+171 0.64+0.01 046+0.18 -36.9+ 205 3.3

a=0.2 9.0+26 -402+774 0.612+0.114 1424+000 581+1.83 059+013 049 +0.18 -51.74265 29

a=05 -8.6 = 4.4 -90.1 +£107.2 0501 £0.109 1.65+0.69 6.64+142 052+0.15 0414016 -63.5=+336 3.9

a=08 -109+21 -419+825 0433+0.158 197+088 4.89+123 056+£0.15 038+£0.15 -485 4265 44

a=10 -1046+689 -771+1461 0452+0.179 2054+098 515+151 0.60+0.08 0.41+0.16 -82.14+552 45

aSCR -12.7+10.0 -122+46.1 0.467 +0.066 3.56+1.66 6.12+1.22 0.61+0.08 0.57+0.17 0.02 £+ 5.77 2.1
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Separately, to further characterize the distribution of designs and their associated oracle scores
proposed by GABO, Figure C.1 plots a histogram of the oracle scores of (1) all 2,048 oracle scores,
and (2) the oracle scores of the top 256 designs according to the penalized surrogate objective
in (5.5) for the LogP task. Compared with the other optimization methods assessed, we notice
that the range of oracle scores is larger for BO-based optimization methods. This helps motivate
our design choice to leverage aSCR and Algorithm 1 with BO-qEI, as BO is able to explore a larger
region of the design space and is an effective parent optimizer for complex design spaces. Secondly,
we also find that the distribution of scores is similar between BO-qEI and GABO, even though the
performance of these two methods is remarkably different in Tables 5.2 and 5.3. This is likely
due to the fact that while BO enables us to explore a larger effective region of the design space
(compared with first-order iterative methods), aSCR more accurately ranks proposed designs
using the penalized surrogate so that we can identify promising candidates even in the low-

budget oracle evaluation regime.
C.2. Correlation of Offline Objective and Oracle Function Values

A key component of GABO with Adapative SCR critical to the above discussion in Section C.1 is
that generated designs score similarly according to the hidden oracle function and the regularized
Lagrangian objective as in (5.5) in order to solve the problem of surrogate objective overestima-
tion encountered in traditional offline optimization settings (Fig. 1.3). To assess this quantitatively,
we computed the distance covariance dCov,, [{ £L(xx; A\*) }}_;, { f(xr) }}_,| between the oracle scores
f(xx) and the constrained Lagrangian scores £(xy; A*) with A = A*(¢) computed using our Adap-
tive SCR algorithm. The empirical distance covariance metric is computed over the n = 2048 design
candidates generated using our GABO algorithm. Briefly, the distance covariance is a nonnegative
measure of dependence between two vectors which may be related nonlinearly; a greater distance
covariance implies a greater degree of association between observations (Székely et al., 2007). We

focus our subsequent discussion on the Penalized LogP task.

Across five random seeds, GABO with Adaptive SCR achieves a distance covariance score of 0.535

+ 0.067 (mean =+ standard deviation). In contrast, naive BO-qEI (i.e., A = 0) only achieves a
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Figure C.1: Distribution of oracle penalized LogP scores. We plot the distribution of oracle scores
for the top 128 surrogate model-ranked designs in black, and the distribution for all 2,048 generated
designs in light gray for each of the offline model-based optimization methods assessed in our work
across 10 random seeds. While GABO and BO-qEI have similar distributions, GABO is able to more
reliably rank top-performing designs higher, such that these designs can be identified even under

limited oracle query budgets.

165



distance covariance score of 0.392 + 0.040. Using p < 0.05 as a cutoff for statistical significance,
the distance covariance scores are significantly different between these two methods (p ~ 0.006,
unpaired two-tailed ¢-test). These results help support our conclusion that GABO with Adaptive
SCR is able to provide better estimates of design candidate performance according to the hidden

oracle function when compared to the corresponding unconstrained BO policy.
C.3. GAGA Algorithm and Ablation Experimental Results

In our ablation experiments presented in Table 5.4, we showed how ‘adaptive” nature of aSCR
is an important component in solving the constrained optimization problem in (5.4) for GABO,
and outperforms alternative approaches that manually hand-tune o (and hence \) as a constant

hyperparameter. We explore whether this conclusion also applies for GAGA as well here.

For clarity, we first offer the explicit formulation of GAGA in Supp. Algorithm 4. We ablate Algo-
rithm 1in GAGA by instead evaluating our method using different values of A = a/(1—«a). Setting
a = 0 (ie., A = 0) corresponds to naively performing gradient ascent against the unconstrained

surrogate model; setting v = 1 (i.e., A\ — 00) is equivalent to a WGAN:-like generative policy.

Algorithm 4 Generative Adversarial Gradient Ascent (GAGA)

Input: surrogate objective fy : R? — R, offline dataset D,, = {#}}7_,, iterative sampling budget T,
sampling batch size b, number of generator steps per source critic training ngenerator, Oracle query budget
k, step size
AdaptiveSCR Input: « step size Ac, search budget B, norm threshold 7
Define: Differentiable source critic ¢ : RY — R
Define: Lagrangian £(z;a) : R x R = R = — fy(2) + 1% [E.inp, [c(2))] — ()] //Eq. (5.5)
Sample Z' «+ {z}}!_, as the top b designs in D,, according to their previously observed oracle scores
// Train the source critic per Lemma 1 to optimality:
¢« argmax;. |, < W1(Dy, 2') = argmax; .y, < [Ezrnp, [c(2')] = E.ozn[c(2)]
a < AdaptiveSCR( fy, c, D, Aa, B, T) // Alg. (1)
Evaluate candidates ! + {y}}o_, = {—L(z};0)}2_,
fortin2,3,...,7 do

Zhe {2 = T =V Lz )

o < AdaptiveSCR(fy, c, D,, Aa, B, )

Evaluate samples V! « {y!}?_, = {-L(z};a)}0,

if t mod ngenerator €quals 0 then

// Train the source critic per Lemma 1 to optimality:
¢ < argmax |, < x W1(Dn, Zt) = argmax . < g B~ [c(2')] = Eznze[c(2)]]

end if

end for

return the top k samples from the T’ x b observations Dy = {{(z}"

)

m
?

Y")}=1 Hn=1 according to y
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Our results are shown in Supp. Table C.3: similar to the analogous ablation results for GABO
in Table 5.4, dynamically adjusting the strength of source critic regularization using our aSCR
algorithm outperforms manually setting the value of « to a constant in both the one-shot £ = 1

and few-shot £ = 128 evaluation settings.

Table C.3: GAGA Adaptive ACR ablation study. We ablate the dynamic computation of a (and
hence A in (5.5)) by instead choosing to manually fix « to a constant value. A value of o = 0.0 cor-
responds to naive gradient ascent, and a value of a = 1.0 corresponds to a WGAN-like generative
policy. Oracle values are averaged across 10 random seeds and reported as mean =+ standard de-
viation. In each evaluation setting, we rank all 2,048 proposed designs according to the penalized
surrogate forward model in (5.5) and evaluate the top k designs using the oracle function, report-
ing the maximum out of the k oracle values. In the suboptimal evaluation setting, we report the
oracle score of the single 90th percentile design according to the penalized surrogate ranking. Bold
(resp., Underlined) entries indicate the best (resp., second best) entry in the column for the partic-
ular evaluation metric. *Denotes the life sciences MBO tasks from Design-Bench (Trabucco et al.,
2022).

Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin  Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -019+196  —
Constrained Budget (k¥ = 1) Oracle Evaluation

a=00 -2451+813 -537+144 0429+£0.023 3.18+088 6.82+021 -1.954+0.00 0.57+0.19 0.86=+1.09 3.6
a=02 -137+00 -703+£1158 0439+0.000 3.74+0.00 7.73+0.46 -1954+0.00 0.88+0.00 -0.17+£0.00 25
a=05 -137+00 -703+1147 0439+£0.000 3.74+£0.00 6.75+072 -195+0.00 0.88+0.00 0.44+0.00 24
a=08 -137+00 -846+1158 0.439+0.000 3.74+0.00 6.75+0.72 -1954+0.00 0.88+0.00 0.44-+0.00 2.6
a=10 -144+15 -27.8+£99.8 0439 £0.000 3.744+0.00 588+1.04 -195+0.00 0.89+0.00 -861+6.15 34

aSCR -29+22 -68.6 £109.8 0.571+0.120 3.74+0.00 5.89+142 -195+0.00 0.89+0.00 0.01+0.14 2.3

Relaxed Budget (k = 128) Oracle Evaluation

a=00 -1153+20.8 -514+170 0.977£0.025 349 £0.69 738+0.15 -1.954+0.00 0.87+0.02 0.86=+1.08 4.8
a=02 -132+00 470+103 0.439+0.000 3.74+0.00 792+024 -1954+0.00 0.95+0.00 1.00=+0.00 24
a=05 -132+00 507 +456 0439+0.000 3.74+£0.00 7.77+021 -195+0.00 0.95+0.01 1.00=£0.00 29
a=08 -132+00 513+4.28 0439+0.000 3.74+0.00 7.44+030 -195+0.00 0.95+0.01 1.00=£0.00 29

a=10 -131+0.0 511+411 0445+0.017 3.74+0.00 7404028 -1954+0.00 0.90+0.01 0.96+0.05 3.0
aSCR -1.0 £ 0.2 141+25.0 0.722+0.091 3.74+0.00 7.98+036 -1.95+0.00 09040.01 0.95=£0.07 2.1

Constrained Budget (k¥ = 1) Suboptimal (90%-ile) Oracle Evaluation

a=00 -944+209 -547+132 0429+0.023 343+067 716+021 -1954+0.00 053+020 0.87+1.08 3.6
a=02 -181+£05 -109+149 0.4394+0.000 3.744+0.00 6574094 -195+£0.00 0.89+0.02 0.97+0.04 25
a=05 -162+0.6 -152+144 04454+0.017 3.74+0.00 6.75+1.18 -1.95+£0.00 0.90+0.02 093 +0.18 24
a=08 -157+1.0 -12.7 £13.8  0.439 £0.000 3.74+0.00 6.84+129 -1.95+0.00 0.88+001 -024+289 3.1
a=10 -146+14 -169 £13.1  0.439 £0.000 3.744+0.00 6.82+1.01 -1.95+0.00 0.894+001 -271+7.71 3.3

aSCR  -142+152 -16.7+81.1 0.546 £0.148 3224+086 6.40+1.13 -1.95+0.00 0.89+0.01 0.2440.20 35

C.4. Dynamic Re-Training of the Adversarial Source Critic

In Algorithm 2 and Supp. Algorithm 4, we describe how generative adversarial optimization al-

ternates between batched acquisition steps according to the optimizer and re-training the source
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critic on the newly sampled trajectory points. To better interrogate the significance of dynami-
cally re-training the source critic during optimization, we compare the performance of the default
GABO and GAGA algorithms (with ngenerator = 4 as the number of acquisition steps per critic re-
training step) against the respective methods without source critic re-training (i.e., ngenerator = o)
in Supp. Table C.4. Across all three evaluation metrics and all eight tasks, dynamically retraining
the source-critic improves upon the performance of the GABO when ngenerator = o0 by 67.4% in
the top-1 evaluation metric; 0.0% in the top-128 evaluation metric; and 33.5% in the 90%-ile eval-
uation metric. Intuitively, these results align with the value of the source critic in being able to
implicitly set the value of the regularization strength « in (5.5) according to the sampled trajectory

points—especially in the constrained budget oracle evaluation setting.

Interestingly, we do not observe similar performance improvements with dynamic re-training of
the source critic in GAGA. Qualitatively, we find that this is because of the iterative first-order na-
ture of the parent gradient ascent algorithm—because the sampled designs are clustered in the
same regions of the design space over the course of optimization, the energy landscape of the
penalized surrogate (i.e., the negative of the Lagrangian expression in (5.5)) does not change sig-
nificantly during source critic re-training. This reinforces the optimizer to stay in roughly the same

regions of the design space.
C.5. Empirical Convergence Analysis

For all of our experimental results, we restrict the surrogate query budget to a total of 2048 allowed
offline surrogate model queries in order to ensure a fair comparison between different optimiza-
tion methods. To ensure that such a budget is sufficient for optimizer convergence across different
methods evaluated, we plot the best achieved oracle Penalized LogP value (i.e., assuming an unlim-
ited oracle evaluation budget) as a function of the number of optimizer surrogate queries (Supp.
Fig. C.2) for the Penalized LogP task. These results show that our methods are indeed able to

converge over the course of the optimization trajectory.
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Table C.4: Ablating dynamic updates to the source critic. We study the effect of training the source
critic model exactly once (i.e., setting ngenerator = 00 in Algorithm 2 and Supp. Algorithm 4) as op-
posed to re-training the source critic model every ngenerator = 4 acquisition steps on the newly
sampled designs. Oracle values are averaged across 10 random seeds and reported as mean +
standard deviation. In each evaluation setting, we rank all 2,048 proposed designs according to
the penalized surrogate forward model in (5.5) and evaluate the top k designs using the oracle
function, reporting the maximum out of the k oracle values. In the suboptimal evaluation setting,
we report the oracle score of the single 90th percentile design according to the penalized surro-
gate ranking. Bold entries indicate the best entry in the column for the particular optimizer and
evaluation metric. *Denotes the life sciences MBO tasks from Design-Bench (Trabucco et al., 2022).

GABO Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 £ 1.96
Constrained Budget (k = 1) Oracle Evaluation

Ngenerator = 00 3.5+ 2.5 -55.6 £52.1 0.577 £0.151 3.74+0.00 6.73+1.10 0.65+0.00 046+0.18 -0.27+13.7
Ngenerator =4 -2.6 £ 1.1 21.3+33.2 0570+0.131 3.60+040 7.51+0.39 0.60+0.07 0.71+0.01 0.60 =+ 1.80

Relaxed Budget (k = 128) Oracle Evaluation

Ngenerator = 00 -0.5 4+ 0.1 128.0 +19.5 0946 +0.035 3.744+0.00 8.38+011 0.67+0.01 0.72+0.00 1.00=+0.00
Ngenerator = 4 -0.5+ 0.1 122.14+20.6 0.954 £0.025 3.744+0.00 836+0.08 0.70£0.01 0.72+0.00 1.00+0.03

Constrained Budget (k = 1) Suboptimal (90%-ile) Oracle Evaluation

Ngenerator = 00 -8.9 + 6.6 -54.1+626 0471 +0.061 3.06+1.04 6.02+141 0.63+0.07 026+062 -532+4.59
Ngenerator = 4 -12.7+10.0 -12.2+46.1 0467 +0.066 3.56 +1.66 6.12+1.22 0.61+0.08 0.57+0.17 0.02 + 5.77

GAGA Branin LogP TF-Bind-8* GFP* UTR* ChEMBL* D’Kitty Warfarin
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 £ 1.96
Constrained Budget (k = 1) Oracle Evaluation

Ngenerator = 00 -14.6 £ 0.8  -1.87 £14.9 04394+ 0.000 3.744+0.00 6.45+0.54 -1.95+0.00 0.88+0.00 -0.17+0.29
Ngenerator = 4~ =29 +2.2  -68.6+109.8 0.571+0.120 3.74+0.00 589+142 -1954+0.00 0.89+0.00 0.01+0.14

Relaxed Budget (k = 128) Oracle Evaluation

Ngenerator = 0 -13.3 £ 0.2 50.2+2.48 0439+ 0.000 3.74+£000 7384031 -1.95+0.00 0.90+0.01 0.99+0.01
Ngenerator =4~ -1.0 £0.2 1414+250 0.722+0.091 3.74+0.00 7.98+0.36 -1.95+000 090+0.01 0.95+0.07

Constrained Budget (k = 1) Suboptimal (90%-ile) Oracle Evaluation

Ngenerator = 0 -17.0 + 1.6 5.88 +4.88 0.439+0.000 3.74+0.00 7.08+0.73 -195+0.00 0.89+0.01 -1.38+1.68
Ngenerator = 4 -1424+152  -16.7 £81.1 0.546 +£0.148 3224086 640+113 -1.95+0.00 0.89+0.01 0.24 +0.20
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Figure C.2: Best oracle penalized LogP value versus optimization step count. We plot the best
Penalized LogP score averaged across 10 random seeds as a function of the number of surrogate
queries made over the optimization trajectory. All offline model-based optimization (MBO) meth-
ods assessed consistently converge within the allowed oracle query budget used in our experimen-
tal setup as described in Section 5.5.
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APPENDIX D

Obtaining Diverse and High-Quality Designs in Offline Optimization: Additional

Experimental Results

The following appendix contains additional experimental results for the interested reader using
DynAMO—our novel algorithm to generate both high-quality and diverse sets of designs in offline

optimization.
D.1. Additional Design Quality Results

We supplement the results shown in Table 6.1 with the raw Best@128 oracle quality scores reported

for each of the 6 tasks in our evaluation suite in Supp. Table D.1.

In Section 6.4, we define the Best@Fk score to evaluate the quality of observed designs according
to a hidden oracle function used for evaluation of candidate fitness. Achieving a high Best@B = k
score ensures that a desirable design is found. Consistent with prior work on batched optimiza-
tion methods (Trabucco et al., 2021; Krishnamoorthy et al., 2023b,a), we are also interested in the

Median@k score defined as

Median@k ({zI}%_) := median;<;<;, r(z]") (D.1)

to evaluate whether a batch of candidate designs (as opposed to any singular design) is generally
of high quality according to the oracle r(z). We report the Median@k score for £ = 128 in Supp.
Table D.2; in general, we find that Dyn AMO does not perform as well as other objective-modifying
baseline methods according to this metric. However, we note that in many applications of offline
optimization, we are often not as interested in how the median design performs, but rather if we
are able to discover optimal and near-optimal designs. For this reason, we chose to focus on the
Best@128 oracle scores in Table 6.1 to evaluate the quality of designs proposed by an optimizer in
our main results. Nonetheless, future work may explore how to better tune DynAMO (e.g., the 7

and 3 hyperparameters in Algorithm 3) to achieve more desirable Median@128 scores.
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Table D.1: Quality and diversity of designs under MBO objective transforms (full). We evaluate
DynAMO against other MBO objective-modifying methods using six different backbone optimiz-
ers. Each cell consists of ‘Best@128 /Pairwise Diversity’ oracle scores separated by a forward slash.
Both metrics are reported mean (957 confidence interval) 401655 10 random seeds, where higher is better.
Dataset D reports the maximum oracle score and mean pairwise diversity in the offline dataset.
Bolded entries indicate overlapping 95% confidence intervals with the best performing algorithm
(according to the mean) per optimizer. Bolded (resp., Underlined) Rank and Optimality Gap
(Opt. Gap) metrics indicate the best (resp., second best) for a given backbone optimizer.

Grad. TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap 1
Dataset D 43.9/65.9 59.4/57.3 60.5/60.0 88.9/36.7 40.0/66.0 88.4/85.7 —/— —/—
Baseline ~ 90.04¥/12560  80.9021) /7868 602097978 88840241033 36,068 /0,000 65.6(4%/0.000  50/55  6.8/-53.2
COMs™  60.409/10467) 6020247502 602887975 88.4(40) /2480000 22 532) /0,000 7120070000  73/65  -3.0/-53.5
COMs* 93104 /66610 67.009/57.40  64.6010)/81.6*  97.1019)/3.809 412048 /99526) 91 8(09 /21,135  2.5/28  12.3/-6.9
RoMA™ 620097 /12.363) 60,9021 /7969 60.2(88) /7.77:6)  88.8(40) /242(133)  36,068) /0,000 656145 /0.000  67/57  -1.2/-533
RoMA*  66.5(09/20307  77.800)/3800  3300/6200 84500 /1800 490016 /54104 95202 /4900 3858  92/-46.8
ROMO  98.1(7/621%  66.810/57.10D 63,0008 /53.906)  91.8(09) /48701 3872551762 87.8(09 /221655 42/28  10.9/-12.7
GAMBO  73.1(128)/173028) = 7710 /11.2009 644019 /6977 92,8(0) /22,1105 46,008 /0.000)  90.6(4% /1552 32/53  10.5/-52.1
DynAMO  90.3%47/66.9¢%  86.2(00)/68.2018)  64.42%) /77222  91.200/93,00)  44.2%)/1295%  89.832 /104  2.8/1.2  14.2/27.8
Adam TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap 1
Baseline 62.9(130 /12,0023 69.7(105) /11,0021 62,919 /4.838)  92,3(89) /168124  37.8(63) /640145  584(185) /62(140)  45/60  0.5/-52.4
COMs~  62.9130)/13,6(122)  65.1(110) /11,0000 62,919 /5038 92 4(10) 2120182 22 562)/0000) 573195 /630143)  60/53  -3.0/-52.4
COMs*  95.6(26) /442015 7106 /57.402) 64,609 /81567  953(19)/3703)  396(58) /79363  67105/31.85345 3.2/30  8.1/-123
RoMA~  62.9(139)/12,30124) 69,7105 /10,9(120)  2,9(19) /4 738)  847(00)/16,8(124)  378(63) /640145 58419 /620140)  45/63  0.5/-52.4
RoMA*  96.5(°) /21.3(03) 77.8(00) /3 8(00) 63.3(00/59(02)  923(89) /1800 498014 /49461  957(16)/148(06)  28/52  14.5/-45.8
ROMO 95609 /557003 67,0002 /56.30D) 3,300 /53501 90,400 /507000) 318631 /255203  71,006,72639  48/28  6.4/-20.5
GAMBO  94.022/15.1(112)  60.0(126) /10.3(1%)  60.9(7) /12.1(113)  91.4(63) /19.6(152)  37.8(63)/0.308)  88.4(138) 2 639  53/58  8.6/-51.9
DynAMO  95.2(7)/54.89  86.2(00)/72334 652011 /84.8>2)  91.2(00)/89.9(53)  455(57) /158073  84.9(120) /12657  2.8/1.2  14.5/35.7
CMA-ES TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap
Baseline  87.6(3)/47.2(112)  86.2(00) /44 6(159)  66.1(19)/93.520)  106(>%) /66.20%4  49.0(10) /12.8(00)  722(01)/164(106)  37/38 14.4/9.5
COMs™  75.6(102)/46,0076)  857(13) /562(158)  64,8(10) /63.1(230)  119(33) /58 8(242)  18.8(79) /22,079 62921 /67260 57/52 7.6/9.7
COMs*  68.000)/24.8(113)  77.2097) /3540165  ¢3.,6(05) /36700 11656 /458161 36.8(3%/0.000 6220590000 73/78  7.1/-382
RoMA~  87.6%3)/46.7(112)  86.2(00) 144 8(158)  66,1(19) /93,521 10609 /66204 49,010 /12,8(00)  722(01)/164106)  37/35  14.4/9.5
RoMA™*  85.9(79) /53101500 798(37)/31,9(152)  64,6(11) /60.5(14%)  118(66) /63.7(16)  44,6(32)/982(189)  722(01) /112(864)  50/4.8 14.1/8.0
ROMO  88.3(60)/57,5(116)  86,2(0:0) /40.2(131)  64.,5(09) /66.5(135)  113(60) /70.2(115)  45,7(13) )97 7054) 77332 )20.9¢409)  42/43  15.7/-3.1
GAMBO  90.4¢44 /39,6155  86.2(00) /53484 66.2(16)/84.8(48)  121(09) /61.3(146)  45235) /173194 722(01)/599(196)  22/43  16.7/16.8
DynAMO  89.8C39)/73,6(09) 85758 /73130 6390 720CD  117(67) /94,0009  50.6(48)/97.8(132)  785(5%) /292835  33/1.8  17.5/55.2
CoSyNE TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap 1
Baseline  61.7(100) /5650 5730060 /12,7098 63,6(04) /28.2(113)  94,8(101) /122(73) 37,041 /0,000 62.7113/0.009  53/45  -0.6/-52.1
COMs~  70.1028) /16,565 73289 /870102) 3504 /1930141 8840117 /17441 28,655 /0.000) 63.80:9/0.000  57/57  1.1/-51.6
COMs*  66.961) /15449 56205 /26,568  63.3(00/18570  11736) /17,881 28,078 /34,3135 70,611 /16,60 57/33  3.5/-40.4
RoMA~  61.7(100)/59(52)  573096) /12,7099 63,6(04) /27.7(109)  948(101) ;12 2(73) 37,041 /0,00 62.709/0.000  53/45  -0.6/-52.2
RoMA* 704072 /17.705%) 77844 /11.9¢0) 64429 /19.839 11765 /10.2¢44 3801 /0.000 50.715/0.000  2.8/50 = 6.2/-52.0
ROMO  79.7(27) /15,7000 62 0(98) /58(46)  64.1(06) /27,6124 90,83 /17.38) 30,64 /0.0(0) 72101/0.102  42/52  3.1/-50.8
GAMBO  79.8(106) /5257 68,0129 /9100 64.2(09) /28.4(157)  99.4(150) /7.1(80)  37,0(41) /0,000 62.709/0.000  37/63  5.0/-53.6
DynAMO  91.344)/18.1130)  77.2(116) 20.3(23)  63.9(09) /3500179  114(70) /22,8119  40.6(36) /74.4¢463) 67504770039  23/12  12.3/-20.7
BO-qEI TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gapt
Baseline  87.3G%)/73700)  86.2(00)/73,8(05)  54(19) /99301 116631 /93,0005 53,133 /190(08)  84.4(09) /12474  58/52  18.7/47.1
COMs™  93.237)/73.707)  86.2(00) /74305 66,404 /99,3001  121(00)/93,2(04)  432(51)/192(102) g6 2(09)/147(9)  43/40  19.2/51.4
COMs* 845059 /68.808) 85608 /71.803) 651008 /96.6(0 121000 /90.8(08) 473041 /206(12)  84.901) /79028  60/57  17.9/40.3
RoMA~ 95222741004 86,3(01) /741(%3)  65.4(11) /99301  121(00) /93 5(06)  53.1(33)/190(°8)  g58(07) /131159  2.7/33  21.0/48.4
RoMA* 82962 /67520 841019 /642010  66,6(09 /98,6002 121001 /78.058) 50,921 /196(0%  84.8(13) /115053  52/63  18.3/32.9
ROMO  93.816)/73806) 86301 /68716) 63908 /948016 11855 /92,510 48,537 /19627  85,5017)/552(363)  50/6.0  19.2/34.9
GAMBO 941019 /74,0000)  86.3(02) /74,3004 66.8(07)/99.3(01)  121(00) /93 3(04)  50,8(33)/193(12) 86,711 /17,735  22/40  20.8/30.0
DynAMO  91.9¢44)/74.802)  86.2(00) /74,63 670013 /99400 12100 /93504  53,5(50)/198(1) 855011 /277(2%7)  30/1.3  20.7/74.2
BO-qUCB TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap 1
Baseline  88.13%/73.9(0%)  86.2(01) /743004 66.4(°7) /99.4°D  121(13)/93,6(°5)  51,3(36)/198(103)  84,5(08)/941G9  3.7/3.0  19.4/43.5
COMs~  88.5(64)/73.4(06)  g62(00)/742(07)  66,0(11)/99,201)  121(00)/93.3(04) 47735 /19816  854(18) /10755  45/45  19.0/45.5
COMs*  89.171/69.008)  859(04)/723(05) 5,611 /97,1009 122004 /91 2(06) 45737 /261(500)  84,7(16) /89 2(140)  52/57  18.6/51.3
RoMA~  86.950/73.905)  86.2(01) /74404  66.4(07) /99.4(00)  120(13)/93.7(05)  51.3(36)/198(103)  84.5(08) /94139  38/3.0  19.2/43.6
RoMA*  84.605/68.222)  84301:1)/63.325  66.9(10/983(03)  121(02)/78 345  521(32)/194(08)  §29(12)/109(3)  47/65  18.5/39.9
ROMO  95.2(2%) /74,0005 86.2(00) /67220) 64,7010 /949(13)  118(21)/92,4010)  50,2(47)/197(13) 85511 /452(36)  47/62  19.9/33.2
GAMBO  95.4(16) /74,005 86,2(00)/74.3(03)  66,3(11) /99,30 121(13) /93404  502(28) /1903  83.6(19/22.02D  47/50  20.2/30.3
DynAMO 95119 /74305  86.2(00)/74.4°6)  66.7(19 /993001 121(00)/93 506 48140 /211228 86,945 /175(47)  35/1.8  20.5/59.4
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Table D.2: Additional model-based optimization quality results. Each cell is the Median@128
oracle score (i.e., the median oracle score achieved by 128 sampled design candidates), reported
as mean (%% confidence interval) 5eros5 10 seeds (here, higher is better). Bolded entries indicate over-
lapping 95% confidence intervals with the best performing algorithm (according to the mean) per
optimizer. Bolded (resp., Underlined) Rank and Optimality Gap metrics indicate the best (resp.,
second best) for a given backbone optimizer.

Grad. TFBind8  UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap T
Dataset D 33.7 428 50.9 87.6 6.7 77.8 —/— —/—
Baseline 58.1(6D 586131  593(86) 85.3(77) 36.0(57) 65.1144) 43 10.5
COMs~ 53.08%  583(132)  59.1(86) 84.072) 22.56:2) 71.0107) 5.8 8.1
COMs* 43900 59,005  63,3(00) 93.2(77) 21.3(36) 89.9(10) 4.0 11.8
RoMA- 51160 5860131 597186 85.3(77) 36.0(57) 65.1144) 5.0 9.3
RoMA* 482043  77.4(00)  633(00) 84.5(0:0) 38.2(08) 88.5(01) 32 16.8
ROMO 58733 37703 27402 61.8(20) 27.0006) 46.0017) 6.5 -6.8
GAMBO 63.8(137) 75309 601633  91,6(112) 46.0(57) 90.1(144) 1.8 21.2
DynAMO  47.0@?%) 9.8  61.9?22 85904 23.4(85) 68.7(121) 45 9.5
Adam TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1
Baseline 54738  604(127)  59.2(86)  g7,9(100) 37.462 56.8(198) 33 9.5
COMs~ 54848  595(127)  592(86) g0 g(104) 22,502 571196 40 74
COMs* 48007 59.109 633000  g89,3(104) 23337 564039 48 6.6
RoMA~ 54748  60.40127)  592(86)  g7,9(100) 37462 56.8(195) 33 9.5
RoMA* 50143 77400 3300 84700 34.9(18) 63.7(62) 3.3 12.4
ROMO 54000 36800 633000 50503 26.1(0%) 30900 57 6.3
GAMBO 49569 557027 57700 84306 37.462 8784 50 121
DynAMO  47.739  69.062 62409  86.4(00) 23.0(69) 65.6141 47 9.1
CMA-ES TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1
Baseline  50.737) 7170049 63300 839010 37.907 59.3(109) 32 11.2
COMs™ 45032  68.0%6  60.530  89.9(108) 18.879) 59.8(%9 5.3 7.1
COMs* 44309 62068 59733 97,60 29.06 612059 50 8.0
RoMA~ 50737 717004 3300 839010 37.907 59.3(109) 32 11.2
RoMA* 47442 58000  599(44) 91,6100 31.609 60.4(77) 45 8.2
ROMO  489G1 74002 60064 845017 22.8(16) 61605 35 87
GAMBO 442008 72768 62700 8610 21420 54909 55 7.1
DynAMO 45334 65889  593G8) 99,0121 22,56 60.6(150 438 8.8
CoSyNE TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1
Baseline 5539 53,6102  60.832  87.4(166) 36.6(44) 59.3(145) 43 8.9
COMs~ 51.7(106) 70902  628(07) 83.1(83) 28.3(54) 58.9(17:3) 5.3 9.3
COMs* 5394 4110 63,3000 1078 23.479) 61.2(156) 42 8.4
RoMA~ 553080 536102 60832  87.4(166) 36.6(44) 59.3(145) 43 8.9
RoMA* 60271  67.7687)  60.2(45) 10311:2) 37.8(81) 48.9(139) 3.5 13.1
ROMO 69.1029 5850113 62104 88452 29.9(45) 707007 32 132
GAMBO  59.5(120)  63,5(112)  554(96)  842(172) 36.6(44) 59.3(145) 45 9.8
DynAMO 53.8(19) 6340115  593(38) 99,0121 20.5(8) 60.6(159) 53 9.5
BO-qEI TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1
Baseline 48.5(1% 5990  63,3(00) 86.7(06) 28.7(18) 72.4(18) 43 10.0
COMs~ 50919 59616 633000 86.6(0-6) 19.40D 78.1(11) 47 9.7
COMs*  43.6(00)  66.016)  63.3(00) 87.5(06) 20.6(09) 66.3(22) 45 8.0
RoMA-  50.0(10) 60,021  63.3(00) 86.4(09) 28.7(18) 78.5(12) 35 11.2
RoMA* 52500 1,000 633000 93.3(57) 26.40:1) 74.301:3) 2.7 11.9
ROMO 499?22 59004 633000 86.8(06) 24.6(08) 73.8(20) 47 9.6
GAMBO 46408 634033 63,300 86.3(09) 28,911 79.1(07) 35 11.3
DynAMO 51509 656G  63.3000 86.7(06) 23.5(24) 77.0007) 3.3 11.3
BO-qUCB TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1
Baseline 503018 62134  63.3(00) 86.6(°6) 31.7(:2) 74.4(06) 2.7 115
COMs~ 511000 61,029  63.300 86.3(07) 19.8(13) 74.2(13) 45 9.4
COMs*  43.6(00) 65614  63.3(00) 87.5(09) 20.1(10) 54.2(119) 45 5.8
RoMA™ 50007 6210349  63.300) 86.7(06) 31.7(12) 74.4(06) 2.7 114
RoMA* 52500 0809 633000 91.4(56) 29.5(14) 65.8(%3) 3.2 10.6
ROMO 49.820 58202 33000 86.8(0-%) 24.3007) 75.0(17) 3.8 9.6
GAMBO 47909 598012  63,3(00) 86.0(°6) 33.129 73.8(12) 48 10.7
DynAMO 488018  659G7) 63300 86,509 22.720) 50.4(146) 47 6.3
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D.2. Additional Design Diversity Results

We supplement the results shown in Table 6.1 with the raw Pairwise Diversity scores reported for

each of the 6 tasks in our evaluation suite in Supp. Table D.1.

In Section 6.4, we describe the Pairwise Diversity metric previously used in prior work (Kim et al.,
2023; Jain et al., 2022; Maus et al., 2023) to measure the diversity of samples obtained from a given
offline optimization method. We can think of Pairwise Diversity as measuring the between-candidate
diversity of candidates proposed by a generative algorithm. However, this is far from the only

relevant definition of diversity; other possible metrics might measure the following;:

1. Candidate-Dataset Diversity: How nowvel is a proposed candidate compared to the real designs

previously observed in the offline dataset?

2. Aggregate Diversity: How well does the batch of candidate designs collectively cover the pos-

sible search space?

To evaluate (1), we follow prior work by Kim et al. (2023) and Jain et al. (2022) and evaluate the
Minimum Novelty (MN) for a batch of % final proposed candidates with respect to the offline
dataset D, defined as

MN(af Yo D) = B,y mig (el )] (D2)
where D is the task-specific dataset of offline sample designs and x!" is the ith candidate design
proposed by an optimization experiment. Following (6.37), we define the distance function d(-, -)

as the normalized Levenshtein edit distance (Haldar and Mukhopadhyay, 2011) (resp., Euclidean

distance) for discrete (resp., continuous) tasks.

For (2), we report the L; Coverage (L1C) of the candidate designs, defined as

dim(z)
1
F\B \ ._ F F
L1C({z; }i24) = m ; rgg;xlmik - 95jk| (D.3)

where dim(x) is the number of design dimensions and z7; is the kth dimension of design /. Note
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that the L1C metric is only defined for designs sampled from a continuous search space; to compute
the L1C metric for discrete optimization tasks, we use task-specific foundation models to embed
discrete designs into a continuous latent space. For DNA design tasks (i.e., TFBind8 and UTR),
we use the DNABERT-2 foundation model with 117M parameters (zhihan1996/DNABERT-2-117M)
from Zhou et al. (2024b) to embed candidate DNA sequences into a continuous latent space. Sim-
ilarly for molecule design tasks (i.e., ChEMBL and Molecule), we use the ChemBERT model
(jonghyunlee/ChemBERT_ChEMBL_pretrained) from Zhang et al. (2022) to embed molecule can-

didates into a continuous latent space.

We report MN and L1C metric scores in Supp. Table D.3. We find that compared with other MBO
objective-modifying methods, DynAMO achieves the best Rank and Optimality Gap for 3 of the 6
optimizers evaluated (Grad., Adam, and BO-qEI). For the remaining 3 optimizers evaluated, Dy-
nAMO is within the top 2 evaluated methods in terms of both average Rank and Optimality Gap
for the L1C (L; coverage) metric. Altogether, our results support that DynAMO is competitive ac-
cording to the MN and L1C diversity metrics in addition to the Pairwise Diversity metric reported

in Table 6.1.

What is the best notion of diversity? In our work, we focus on the Pairwise Diversity metric in our
main results (Table 6.1)—however, this does not mean that this metric is the best for all applica-
tions. Rather, our focus on the Pairwise Diversity metric is determined by our problem motivation.
Compared with the minimum novelty and L coverage diversity metrics, the definition of pairwise
diversity best captures the notion of diversity that we are interested in—that is, capturing many
possible ‘modes of goodness” in optimizing the oracle reward function. We note that these modes of
goodness may not necessarily be significantly ‘novel” according to our task-specific distance metric,
and so we treated the Minimum Novelty metric as only a secondary diversity objective for evaluat-
ing DynAMO. (Indeed, because DynAMO encourages a generative policy to match a distribution
of designs constructed from the offline dataset, DynAMO may not increase the minimum novelty
of designs compared to those proposed by the comparable baseline optimizer.) Similarly, we find

that the L; Coverage metric is more sensitive to outlier designs when compared to the Pairwise
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Diversity, and therefore also treat it as a secondary diversity evaluation metric for our experiments
in Supp. Table D.3. Future work might explore other methods that focus on improving not only

the Pairwise Diversity metric, but also other diversity metric(s).

D.3. Imposing Alternative f-Divergence Diversity Objectives via Mixed-Divergence Reg-

ularization

The MBO problem formulation proposed in (6.15) introduces a weighted KL-divergence regular-
ization of the original MBO optimization objective. However, alternative distribution matching
objectives have been used in prior work (Agarwal et al., 2024b; Gong et al., 2021; Ma et al., 2022),
and one might hypothesize that we can similarly generalize (6.15) as
max Jy(7) = Ege[ro(2)] — 2 Dy(a71p)

mell (D4:)

s.t. Ewwp%(x) [C* (ZL‘)] — EquTr(x) [C* (.7})] < Wy

to any arbitrary f-divergence metric D(-||-) that measures the difference between two probability
distributions @, P over a space Q defined by D¢(Q||P) := [,dP f (%) for a convex univari-
ate generator function f. For example in our main text, we specialize to the KL-divergence where

fxr(u) := ulogwu traditionally used in the imitation learning literature.

However, we found that this naive approach does not generalize well to alternative f-divergences:
recall that a core contribution of our work was the ability to reformulate the optimization ob-
jective as a weighted sum over distribution entropy and divergence (i.e., Lemma 5) in order to
admit an explicit, closed form solution for the dual function in Lemma 6. Such an approach is
intractable using standard algebraic techniques. This is not ideal, as a number of prior works
have proposed that alternative divergences—such as the x2-divergence defined by the generator
fy2(u) = (u—1)?/2—can better penalize out-of-distribution surrogate behavior and better quantify
model uncertainty when compared to the KL-divergence (Tsybakov, 2008; Nishiyama and Sason,

2020; Ma et al., 2022; Wang et al., 2024a).

In this section, we show how to overcome this limitation and demonstrate how our theoretical

176



Table D.3: Additional model-based optimization diversity results. Each cell is a pair of values
mn/1l1c; where mn is the Minimum Novelty and 11c the L; Coverage. Metrics are reported as
mean (9% confidence interval) 51555 10 random seeds, where higher is better. Bolded entries indicate
overlapping 95% confidence intervals with the best performing algorithm (according to the mean)
per optimizer. Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate
the best (resp., second best) for a given backbone optimizer.

Grad. TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap
Dataset D 0.0/0.42 0.0/0.31 0.0/1.42 0.0/0.68 0.0/6.26 0.0/0.58 —/— —/—
Baseline 21.239/0.16(0D  51.729/0.200013)  97.4639)/0.21(010) 79,5197 /0.42(018)  950(07) /0.00(%%0) 10261 /0,000 33/63  74.5/-1.44
COMs™ 22137701401 51.432) /0200012 97.4(39)/0.2401D) 89,077 /0.40(010)  94.1(07) /0,00°0) 10048 /0.0000%)  3.3/7.7  75.7/-1.45
COMs*  10.9(0%)/0.49(°02)  31,7(08)/0,31(000) 52 4(110)/1,11(016) 13,7011 /0,610 99,6(°3) /0.370-11) 10009 /0.800%7)  6.2/2.7  51.4/-1.00
RoMA~  21.2G1/0.1601  51.729/0.21(012 97,439 /026010 79,5(197) /04019  95,0(07) /0,000  102(6:1) /0,009  2.8/5.8  74.5/-1.44
RoMA* 181014 /0.27(002)  40,1(02)/0.4400)  187(01) /0.41(00)  953(00) )0 41(002)  71(08) /1 28(001)  (2(00)/045000)  58/35  29.9/-1.07
ROMO  16.1(09/0.33(002) 32 9(0.1) /0,30(000)  50(07)/1,31(002)  231(00)/0,61(002)  785(05) /0 34(016)  153(04)/6,13(280)  60/2.7 51.5/-0.11
GAMBO  14.02/0.17010)  46.7(27)/0.24(013)  96,8(39 /0.25(016)  76,8(197) /0.37(011) 83 8(68)/0,00(000)  31,5(36)/0,09014)  60/5.7  583/-1.42
DynAMO  21.101/0.36(0%)  52.2(13) /0.,52(006)  98.6(15) /1.46(03%)  858(10) /2.49(006) 95 (04) /6.47(129)  107(67) /585135  2.2/1.3  76.7/1.25
Adam TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap 1
Baseline  23.7(28)/0.11%) 51,139 /022000 955(3) /0230015 79.3(212)/0.48(03D)  94.8(07)/027(055) 10362 /0.24(4)  35/58  74.5/-1.35
COMs™  23.8(28)/0.13(%00) 51,639 /0.2001)  95.5(53) /0.24(016)  78,6(207) /0490039 941(07)/0,00(°%) 10269 /0,03  33/68  74.2/-1.43
COMs*  13.004/0.44(002)  31,7(08) /0,31(000) 53 0(128) /7,10(020)  15,0(16) /0,50(*12)  99,7(02) /0,58(028)  99,9(01) /0.88(0%)  6,0/2.7  52.0/-0.98
RoMA~  23.63%/0.12(000 51,135 /0210 95553 /021(10)  79,3(212) /0.48(032)  94.8(07) /027055 103(63) /0,04*%)  33/68  74.5/-1.39
RoMA*  18.3(05)/0.28(000 40,102 /0.46°%)  18.9(02)/0.41(002)  95.3(00) /0.42(001) 47 ,6(24) /1 87(000) 571002 /0,780 6,0/3.7  37.6/-0.91
ROMO  13.6(°2/0.2800D 32 9(0:1)/0.30(0:00)  271.9(00)/1,05002)  23.4(00)/0.74(00)  98,1(00) /1,34(003) 99 8(0-1) /0,080  6.0/3.7  48.3/-0.98
GAMBO  23.7¢1/0.14(000) 51,334 /022010 95,031 /0.35(02%)  80,0(206) /0.50(03)  84.8(64)/0.26(°%)  27.3G/0,09012  43/52  60.4/-1.35
DynAMO  14.70:/0.330%) 462009 /0,55(%) 98,7012 /1.44(0%)  859(18) /2,400 949(04)/7,06°7 108" /6.91°™)  3.0/1.2  74.7/1.50
CMA-ES TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap
Baseline 16.521/0.33(00%)  47.8(10)/0.48(004)  96.5(07) /2,18(004)  73,0(180) /1 82(012)  100(®0)/3.26(142)  100(00)/3,77(136)  38/42  72.3/0.36
COMs™  13.6(07)/0.34(005)  46.9(09) /0,52(006)  97.3(26) /1 81(048)  84.7(69)/2.10(032)  100(°0 /0.31(%18) 100000 /0.43(018)  4.7/47  73.7/-0.69
COMs*  11.131/0.320004)  44,028) /0.43(000)  985(1.1)/1.20(027)  77.4(197) /1 85(016) 86135 /0.06(*01)  39.079) /0,020  63/7.0  59.3/-0.96
RoMA-~ 16.5(2'2)/0.32(”'“4) 47‘9(0.9)/0.49(0.03) 96.6(”'7)/2.16(0‘05) 73.0(18‘0)/1.82“]'12) 100(0.0)/4.15(1.93) 100(0.0)/3.77(1436) 3.5/4.0 72.3/0.51
RoMA*  13.4(07)/0.36(0%)  47.7(17)/0.42(007)  99,8(02) /1350039  80.0(62)/1.80°45) 100 /0.30°15) 100000 /3,971  32/57  735/-0.24
ROMO  16.22%/0.38(002)  47,0(17) /0.49(006)  977(17) /2 01(02%)  853(59 /213015  100(00)/3,14(185)  51.90176)/050(033) 35/40  66.4/-0.17
GAMBO  24.3(09/0.31(009)  533(14) /051001 95 ((15) /2,17(006) 73 5(23.6) /1 83(015) 85 6(30) /3,37(049) 47 5(20)/312(040)  55/43  62.0/0.27
DynAMO  12.9(%)/0.40(°%)  48.0(19) /0.56(*0D)  96.7(3%) /1.82(072)  §1.8(134) /2.54(005) 94 5(07) /4.75(216)  112(78) /3290156  40/2.2  74.3/0.62
CoSyNE TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap
Baseline 24.53%)/0.1007) 49,731 /0,220010)  98,5(16) /0,39(020)  86,6(127) /0.27(013)  93.2(10) /0,100 91,929 /0,100  3.2/53  74.1/-1.41
COMs~  15.4(49/0.23(09)  44965)/0.20(013) 90,0152 /0.38027)  86.2(77) /0.39(0%)  93.8(0:6) /0,07(*01)  101(62)/0.06°%  50/58  71.9/-1.39
COMs*  12.8(00)/0,24(000) 42 7(14) /0,32(003) 34 7(144) /7 31(022)  50,0(19)/1,39(02%)  g7.8(31)/1,29(037)  30,8(57)/0.2500%)  75/1.5  43.0/-0.81
RoMA~  24.63)/0.1007) 49,730 /022011  98,6(1%) /0.40(°2)  86,6(127)/0.27(012)  93.2(19) /0,10(°00)  91,920) /0,100  2,5/52  74.1/-1.41
RoMA*  17.133)/0.22(005)  49.3(30) /042009  995(09) /0 53(0.13) 89,634 /055(022)  93.2(16) /0. 10(000)  655(252)/0,0509%)  40/3.7  69.0/-1.30
ROMO  22.9(63)/0,18(099)  48,9(15) /0,25(010)  758(61) /71,2002  92.2(33) /0.39(012) 84 644 /0,0900%0)  31.8(56) /0,061  50/4.5 59.4/-1.25
GAMBO  22.8(28)/0.12(008)  50,8(1:%) /0.22(015)  90,8(142) /0.53(018) 91,934 /0.14(013)  86.0(33)/0.100000)  29,6(36) /0,020  45/63  62.0/-1.42
DynAMO  17.869/0.211)  48.42%/0.180%)  96.739/0.64(042)  80.2(129/0.4303%)  94,5(07) /185022 112(7%) /0,941 40/33  75.0/-0.90
BO-qEI TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap 1
Baseline 21.8(°%/0.41(002)  51,5(03) /055000  97,6(03) /2 37(003)  g54(1.5) /2 11(015) 94 6(0-1) /7840001 10629 /6,613  33/50  76.2/1.70
COMs™  21.9(%%)/0.41(003)  51.8(°2)/0,56(001)  97.3(05) /2.44(005)  852(05) /3 55(002) 93 5(12) /7610024 105(16)/7.19(022)  40/3.0  75.6/1.85
COMs*  12.704/0.44(001)  432(02) /0,57(00)  833(21)/2,50(005)  79.4(13) 2 41007) 85 504)/750(001)  355(12) /1 66000 75/38  56.6/0.90
RoMA~  21.6(°3/0.40000%)  51,7(03) /0,55(002)  97,7(05) ;2 41(004)  859(11) /0 52(002) 94 6(01) )7.84(00)  105(35) /6.45066)  32/52  76.1/1.42
RoMA*  13.6(°%/0.310002)  450(02)/0,56(001)  98.5(04)/1.86(00%)  88.2(06)/1.99(006) 94 3(01) 7.87(00D)  116(2%)/7.0904)  37/50  76.0/1.67
ROMO  15.6(04/0.39(002)  475(02) /055001 87.7(13) ;2 50(0:03)  87.9(10) /2. 48(005) 86 6(22)/751(00) 308254214013  55/53  59.3/0.98
GAMBO  15.4(03)/0.40(00)  51,8(02) /0,55001)  97.8(03) /2.38(010) 84 .9(09) /2 53(005) g5 1(04) /7 45(001) 14 3(15)/1.29008)  57/63  582/0.82
DynAMO  21.0(%%/0.4200)  51.9(02) /0.56(00D)  97.4(04) /2 47(003)  857(09) /2 54(003) 94 8(0-1) /7.87(00D)  126(146) /7.92(00)  30/22  79.4/2.02
BO-qUCB TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank | Opt. Gap 1
Baseline 21.6(°3/0.400092)  51.7(02) /0.54(00)  97.9(04) /2 40(005)  853(11) /2 52(007) 93 8(06) /7 78(004) 98 8(11) /6 64(009)  35/47  74.8/1.77
COMs~  21.7(03)/0.400002)  51,702) /0.56(®0D  97.4(04) /2 40(006)  854(14) /2 49(004)  9p 9(1.1) /7 75(009) 99 2(16) ;684011 38,37  74.7/1.80
COMs*  12.6(0%)/0.44(002) 43 5(03) /0,57(001)  84,0(23) /2,52(005) 79 2(14) ;2 38(008) g4 (11) /7 51(002) 39 4(60) /1 660001 75/37  57.2/0.90
RoMA~  21.6(°%/0.39009%)  51,6(03)/0,55(001)  97.8(04) /2 37(005) g5 5(11) /2 54(007) 93 8(06) )7 78(004) ~ 98 8(1.1) /6,64(00)  35/48  74.9/1.77
RoMA*  13.9(03)/0.31(002)  4571(05)/0,56(001)  98,8(03) /1 85(002) 88 5(05)2 01(006) 94 1(01) /786001  112(25)/723(016)  33/52  75.4/1.69
ROMO  16.0004/0.40(002)  477(02) /0,55(001)  88.1(12) /2, 51(0:06)  90,9(06) /2,49(005) 85 4(03) /7 48(002)  20.9(24) /1,60°%) 57,53  58.2/0.89
GAMBO  21.9°9/0.40000)  51,7(03) /056001  97,5(04) /2 39(005)  852(10) /3 52(0.04)  81,9(19) /737009  259(14) /134004 47/60  60.7/0.82
DynAMO  21.4(%)/0.400002) 51,702 /0,550  97.1(05) /2. 47(007)  g53(11) /2, 54(005)  94,7(02) /7.88(003)  109(45) /7.80(02%)  3.7/2.3  76.6/2.00
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and empirical results generalize to alternative f-divergence objectives for enforcing distribution
matching in the sampling policy. Firstly, we look to recent work by Huang et al. (2024a) and others
describing ‘mixed f-regularization” defined by a mixed generator function f, (u) := v f(u) +ulogu

for some weighting scalar v € [1, +00), which admits a ‘mixed f-divergence’ given by

Dy(QIIP;v) := vDs(QI|P) + Dxi(Ql| P) (D.5)

for probability distributions @, P.> Given a mixed f-divergence, we can define a modified MBO

objective as in (6.13):

T5(r5) i= Eqelro(@)] = 2 Dy(a" i) = Egrlro()] — 2 Dra @ l195) = 22Dy (a 1)
_By

T

(D.6)

= J() Dy(q"|lpp)

where ry is again the forward surrogate model, J(r) is as in (6.13), p},(x) is the T-weighted proba-
bility distribution as in Definition 4, and ¢" () is the sampled distribution over designs admitted
by the realized sampling policy 7. Given this expression for the modified MBO objective, it is easy

to rewrite J¢(r; ) similar to Lemma 5 in the main text:

Lemma 9 (Generalized Entropy-Divergence Formulation for Mixed f-Divergence). Define Jy(m;7)

as in (D.6). An equivalent representation of J(m;y) is

Jp(m) =~ =H(q" () = (1 4+ B) Dx(q" (@)[|pp () — By Dy (¢" ()| |pp(2)) (D7)

where H(-) as the Shannon entropy and Dy (-||-) as the f-divergence.

*Tt is trivial to verify both that f.(u) is convex and that 0 ¢ dom(f,) given a function f(u) that also satisfies both of
these conditions.
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Proof. The proof is trivial using Lemma 5:

By

T5(x) = Egrlro@)] ~ 2D5(a i w) = (x) ~ L Dy(a" )

~ 7 J(m) — ByDys(q"||PD) (D.8)

~ —H(q") — (1 + B)Dxr(¢"||pp) — BYDs(¢"||pD)

up to a constant independent of the policy 7. O

We now consider its derivative optimization problem constrained by source critic feedback analo-
gous to (6.15):

max Jy(m;y) = Egrlro(z)] — éDf(qﬂHp%%’Y)
mell T (D.9)

s.t. Emwp%(z)C* (z) — Equw(x)C* () < Wy

where ¢*(z) is again an adversarial source critic and W) is some nonnegative constant. We can show
that (D.9) admits an explicit dual function which can be used to tractably solve this optimization

problem.

Lemma 10 (Explicit Dual Function of (D.9)). Consider the primal problem

o B
max Jy(m;7) = Bqrlro(2)] — —Dr(q"|[ppi7) (D.10)

s.t. Each%(;r) [C* (l‘)] — Equw(x) [C* (ZL')] < Wo

for some convex function f where 0 ¢ dom(f). The Lagrangian dual function g(\) is bounded from below

by the function g,(\) given by
ge(N) = B[ (14 NAEp [e* ()] = Wo) = By @7 9By f* (0" () (D.11)
where f*(-) is the Fenchel conjugate of f.

Proof. Recall that the generator function of the mixed f-divergence penalty is given by f,(u) =

vf(u) + ulog u for some weighting scalar v € [1, +00). Define fxi(u) := ulogu. From (6.18), the
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dual function g()) : Ry — R of the primal problem is given by

D D

—Egrlog (¢") + B(1 +7v)A (Epgc*(x) — Egrc(x) — Wg) ]

= min {(1 + B)Epr, fxL | =5 > + BVEpr f < 7r> (EprKL < ”) + Egr logpp>

el Ph Pp Pp (D.12)
81+ A (B (1) — Bye”(2) — Wo) |

= 21611111 [ﬁEp;, fkL (Zj

D

™

p—r

> — E4~ log pp
D

81+ A (B (1) — Bye(2) — Wo) |

where we define §(1 + v)\ € Ry as the Lagrangian multiplier associated with the constraint in

(D.9) (recall that R is closed under multiplication). We rearrange terms to rewrite g(\) as

BEpz, [ <)\C*(33) . 2(9];> + fxL <1(9];>}
e S

— Eyr log pp + B(1 + 7)AEpr c*(z) — B(1 + v)AWol

g(A) = min

The sum of function minima is a lower bound on the minima of the sum:

9(A) 2 BEyz, min [ <>\C*($) : ;;) + fru <§;>}
ey |- (- 32) 41 ()
— max By log pp, + min [B(1 + ) AEpp,c*(x) — B(1 +7)AWy]
~ |- (0@ 2) a0 ()]
+ ByEpr, min {— (Ac*( ) pD> +f (ppﬂ

+ B(1 +7)AEp; c™(z) — B(1 4+ 7)AW)

(D.14)

ignoring the term max ¢y [Eq~ log p],] that is constant with respect to A\. We then perform the same
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tactic of minimizing over the superset R, O {z | 37 € Il s.t. ¢"(z)/p}(z) = z} as in our proof for
Lemma 6:

9(A) = BEpz, min [— (Ac*(2) - 2) + fiL (2)]

ze€R

+ B7Epy, min [— (Ac* (@) - 2) + f(2)] + B + 7)A(Epg c*(x) — Wo) (D.15)
= B [~Epp, S (A (@) = VB, [ (A" (@) + (1 + V) A(Epg " (x) — Wo)]

where f*(-) is the Fenchel conjugate of a convex function f(-). The Fenchel conjugate of fxi.(u) =

uloguis f§ (v) = e’ (Borwein and Lewis, 2006), so
90) 2 8 [~Eyp Oy FOC () + (1 4+ 1Ay () — W) (D.16)
Define the right hand side of this inequality as the function g¢(\) and the result is immediate. [

Corollary 1 (Explicit Dual Function of (D.9) Using Mixed y?-Divergence). As an example, we can
consider the mixed x*-divergence defined by D,>(Q||P;~) = vD,2(Q||P) + Dg(Q||P) (Huang et al.,
2024a). The x*-divergence generator function is f,2(u) = (u—1)?/2, and its Fenchel conjugate is I3 (v) =

v+ (v?/2) from Lemma 3. Directly applying Lemma 10, our lower bound on the our dual function is

gA) > ge(N) =8| — Ep%e/\c*(x)fl —Epz, <;(/\c*(x))2 + Ac*(a:))
(D.17)
L DB (@) ~ W)

To experimentally evaluate the utility of distribution matching using a mixed y?-KL-Divergence,
we substitute the Dkp(+||-) divergence with the mixed y?-Divergence D f2 (:]];y) (setting v = 1.0
for experimental evaluation) and its associated dual function bound from (D.17) into Algorithm 3.

Practically, we find that this only requires updating the dual function in Algorithm 3 per Corol-
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lary 1 and the Lagrangian of (D.9) given by

£(:0) = ~Ege[ro(0)] + 2 Dy (a7 |165) + D (a" |10B)]
T (D.18)

+ B+ A [Epp, " (2) — Egre™ (z) — Wo

Experimental Results. We compare DynAMO implemented with a mixed x? divergence penalty
(with v = 1.0) against our original DynAMO implementation (i.e., ¥ = 0) in Supp. Tables D.4-
D.5. Empirically, we find that using the mixed x?-divergence penalty offers limited utility com-
pared with KL-divergence alone: the latter is non-inferior to the former according to both the
Rank and Optimality Gap metrics for all 6 optimizers assessed according to the Best@128 oracle
score. Furthermore, DynAMO outperforms DynAMO with mixed y?-divergence according to the
Rank and Optimality Gap metrics for 5 out of the 6 optimizers assessed according to the Pairwise
Diversity metric. Based on our qualitative analysis, we hypothesize that the over-conservatism of-
ten attributed to XQ—divergence-based penalties in related literature (Ma et al., 2022; Huang et al.,
2024a; Wang et al., 2024a) may adversely affect the generative policy’s ability to sufficiently explore
the design space when compared to using KL-divergence-base distribution matching alone. Fur-
ther work is needed to tune the relative mixing parameter v and/or explore how other alternative

f-divergence metrics may be used with DynAMO.
D.4. Comparison with Offline Model-Free Optimization Methods

In our main experimental results reported in Section 6.5, we compare DynAMO against other
model-based optimization (MBO) methods—that is, optimization methods that explicitly (1) learn a
proxy forward surrogate model rg(x) for the oracle reward function from the offline dataset; and
(2) optimize against ry(z) and rank final candidate designs according to a scoring metric involving
rp. Alternatively, recent work have also proposed methods that instead do not learn a forward

surrogate model ry(z); we refer to such methods as model-free algorithms.

Survey of Existing Model-Free and Additional Model-Based Methods. Krishnamoorthy et al.
(2023b) introduce BONET (i.e., Black-box Optimization Networks), which learns an autoregre-

ssive model on synthetically constructed optimization trajectories that simulate runs of implicit
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Table D.4: Quality of design candidates using mixed x2-divergence DynAMO. Using Corollary
1and (D.9), we show that it is possible to extend DynAMO to leverage a mixed y2-divergence that
equally weights both x?-divergence and KL-divergence to penalize the original MBO objective. We
evaluate this specialized implementation of DynAMO against baseline DynAMO and vanilla opti-
mization methods, and report the Best@128 (resp., Median@128) oracle score achieved by the 128
evaluated designs in the top (resp., bottom) table. Metrics are reported mean (°>% confidence interval)
across 10 random seeds, where higher is better. Bolded entries indicate average scores with an
overlapping 95% confidence interval to the best performing method. Bolded (resp., Underlined)
Rank and Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best) for a given
backbone optimizer.

Best@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1

DatasetD 439 59.4 60.5 88.9 40.0 88.4 — —
Grad. 90.04%»  80.9012D  60.2(89  88.8(*0 36.0(69 65.6(145) 2.8 6.8

DynAMO-Grad.  90.3¢7 86200 64423 91200 44279 89.832) 1.2 14.2

Mixed x2 DynAMO-Grad.  59.3¢%%3 862000  64.4(20) 12009 42,069 83.6(14) 2.0 12.5
Adam 629130 6970105 62919 92 3(89) 37.8(69) 58.4(18%) 27 0.5

DynAMO-Adam 952017 86.2(%0 65201 91200 45.567 84.9(120) 1.3 14.5

Mixed x> DynAMO-Adam  59.36% 8620000 64,429 120049 42,056 83.6(14) 2.0 12.5
BO-gEI  87.36%  86.200  65.4(10) 116G 53.1(33) 84.4(02) 2.8 18.7

DynAMO-BO-qEI  91.9%4%)  86.2(00)  67.001%) 12100 53.5(30) 85.5(11) 1.5 20.7

Mixed x> DynAMO-BO-qEI ~ 92.2¢41) 8631 66.8(1 123(3:0) 51.7(44) 85.1(15) 17 20.7
BO-qUCB  88.1(% 862001  66.4(07) 121(4%) 51.3(3:6) 84.5(08) 2.2 19.4
DynAMO-BO-qUCB 9510 86.2000 66,719 121(00) 48.1¢40 86.9(45) 1.7 20.5

Mixed x> DynAMO-BO-qUCB 8574  86.3(02  66.3(0) 12100 51.5(+%) 83.8(11) 2.0 19.0
CMA-ES 87.6¢3 86200  66.1(10 10659 49,0049 72201 2.0 14.4

DynAMO-CMA-ES  89.83¢ 8578 63,9009 117(67) 50.6(+%) 78.5(59) 1.7 17.5

Mixed x> DynAMO-CMA-ES ~ 84.2(107)  84.5(26)  ¢5.1(13) 11348 45.0(49) 81.8(40) 2.3 15.4
CoSyNE  61.70000  57306) 63604 948001 37.041 62.70:%) 2.8 -0.6

DynAMO-CoSyNE ~ 91.3¢4  77.2016)  £3.9(09) 11479 40.6(%9) 67.50:4) 1.5 12.3

Mixed x2 DynAMO-CoSyNE ~ 94.32% 7833 63122 1000109 37.467 §2.3(41) 17 12.4

Median@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1

Dataset D 337 42.8 50.9 87.6 6.7 77.8 — —
Grad. 58161 5860130 59386 853077 36.067) 651044 20 10.5

DynAMO-Grad. 47.0%®  69.8¢0  61.932  859(04) 23.4(89) 68.7(121) 1.5 9.5

Mixed x> DynAMO-Grad. 4529 66.9G5»  58.3(69 86.6(21 20.6(14) 64.4(83) 25 7.1
Adam  54.7¢®) 6040127  592(86)  g79(10.0) 37.4(62) 56.8(19%) 1.8 9.5

DynAMO-Adam  47.7G0  69.052 62409  86.4(06) 23.0(6:0) 65.6140) 17 9.1

Mixed x> DynAMO-Adam 452069 66.9G52  58.3(69 86.6(2D 20.614) 64.4(83) 25 7.1
BO-qEI 485015 59920 3300  g67(06) 28.7(18) 72.408) 18 10.0

DynAMO-BO-gEI  51.5(%9 65,631 633000  86.7(06) 23524 77.0(07) 1.7 11.3

Mixed x2 DynAMO-BO-qEI ~ 44.8(%)  66.139  63.3(00)  86.4(°6) 27.7G9 73.9(28) 2.3 10.4
BO-qUCB  50.3(1%) 62164 63300  86.6(06) 31.7(12) 74.4(06) 1.5 11.5
DynAMO-BO-qUCB  48.81%) 65937  63.3(00) 86,59 22729 504040 2.0 6.3

Mixed x? DynAMO-BO-qUCB ~ 44.007)  68.239  63.3(00)  86.5(°6) 20909 74.5320) 2.0 9.6
CMA-ES 50737 717104 633000  839(10) 37.9(¢07 59.3(10:9) 1.5 11.2

DynAMO-CMA-ES 453324 65859 59308 9900121 22,561 60.6(150) 2.2 8.8

Mixed x2 DynAMO-CMA-ES ~ 48.5G0 70,05 63203 87,020 19.438) 437149 23 5.4
CoSyNE 55330 536102 60832  87.4(166) 36.6(+4) 59.3(14%) 23 8.9

DynAMO-CoSyNE  53.8(110 340115 59338 99,0121 20.5G8) 6060150 23 9.5

Mixed x? DynAMO-CoSyNE ~ 59.90%) 65409  60.9GD  89.3(148) 23.4(45) 66.6(>) 1.3 11.0

183



Table D.5: Diversity of design candidates using mixed x2-divergence DynAMO. Using Corol-
lary 1 and (D.9), we show that it is possible to extend DynAMO to leverage a mixed x>-divergence
that equally weights both y2-divergence and KL-divergence to penalize the original MBO objective.
We evaluate this specialized implementation of DynAMO against baseline DynAMO and vanilla
optimization methods, and report the pairwise diversity oracle score achieved by the 128 evalu-
ated designs. Metrics are reported mean (°>% confidence interval) 501055 10 random seeds, where higher
is better. Bolded entries indicate average scores with an overlapping 95% confidence interval to
the best performing method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap)
metrics indicate the best (resp., second best) for a given backbone optimizer. Minimum novelty
and L; coverage scores are reported in Supp. Table D.6.

Pairwise Diversity@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1

DatasetD 659 57.3 60.0 36.7 66.0 85.7 — —

Grad. 12560 7868 7.97:8) 24.1033) 0.000) 0.0 3.0 -53.2

DynAMO-Grad.  66.9¢%%  68.2(108)  772(15) 93012 129(553) 104(561) 1.3 27.8

Mixed x> DynAMO-Grad.  16.8020 72,600 47.0G1)  91,0(16) 182(459) 74.2(30) 17 18.7

Adam 12,0023 11,002D 4868 16.8(124) 6.4(145) 6.2(140) 3.0 -52.4

DynAMO-Adam  54.8%% 72334 84802  89.9(53) 15873 12673 17 35.7

Mixed x2 DynAMO-Adam  16.8120) 72,640 992070 97,0(16) 182(459) 74239 1.3 274
BO-qEI  73.70® 73805 993001 93005 190(0®) 12474 25 471

DynAMO-BO-gEI ~ 74.8(0» 746  9940D 93504 19819 277(37) 1.3 74.2

Mixed x2 DynAMO-BO-qEI ~ 73.6%7)  74.3(0%)  99.4(00)  93.9(04) 1670415 29.1¢77) 22 27.5
BO-qUCB  73.90%) 743004 99401 93,609 198(103) 94.139) 22 435
DynAMO-BO-qUCB ~ 74.3%)  74.4(06) 993001 93,506 211(228) 175(447) 1.7 59.4

Mixed x> DynAMO-BO-qUCB ~ 73.4(7) 743004 99501  93.7(05) 17752 28.17:3) 2.2 29.0
CMA-ES 472(112) 446059 93520 6204 12.8(00) 164(106) 2.5 9.5

DynAMO-CMA-ES  73.6(%9  731GD  7206D 94,0005 97.8(132) 292(835) 1.3 55.2

Mixed x> DynAMO-CMA-ES ~ 52.9(%08) 515221 7747 69.7(124) 154(107) 86.9(729) 2.2 18.6
CoSyNE 56060 12708 2820113 123(73) 0.000:0) 0.009) 3.0 -52.1

DynAMO-CoSyNE 181130 20.3(33) 350079  22.8(119) 74.4(46:3) 77.0659) 1.7 -20.7

Mixed x?> DynAMO-CoSyNE ~ 22481 34.1(201) 347201 23,0074 104(77%) 49.4(256) 1.3 -17.5
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Table D.6: Diversity of design candidates using mixed y?-divergence DynAMO (cont.). Using
Corollary 1 and (D.9), we show that it is possible to extend DynAMO to leverage a mixed x>-
divergence that equally weights both y?-divergence and KL-divergence to penalize the original MBO
objective. We evaluate this specialized implementation of DynAMO against baseline DynAMO
and vanilla optimization methods, and report the minimum novelty and L; coverage oracle scores
achieved by the 128 evaluated designs. Metrics are reported mean (%>’ confidence interval) 5crogg 10
random seeds, where higher is better. Bolded entries indicate average scores with an overlapping
95% confidence interval to the best performing method. Bolded (resp., Underlined) Rank and
Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best) for a given backbone
optimizer. Pairwise diversity scores are reported in Supp. Table D.5.

Minimum Novelty@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1

Dataset D 0.0 0.0 0.0 0.0 0.0 0.0 — —
Grad. 21.2G0 51729 97469  7950197) 95.0(07) 102(61) 23 74.5
DynAMO-Grad. 21100 522033 98615 858010 95.0(0:4) 10767 1.3 76.7
Mixed x2 DynAMO-Grad. ~ 14.6?%  51.904 992007 g52(21) 85.2(16) 34.001D) 23 61.7
Adam 23.72%  5116G% 95563  793(212) 94.8(07 103(6®) 2.0 74.5
DynAMO-Adam ~ 14.709) 462005  98.7(12)  859(18) 94.9(04) 10872 1.7 74.7
Mixed x> DynAMO-Adam  204G%  51.904 873079 85221 85.2(1:6) 34,0011 2.3 60.7
BO-gEI 21.8(*® 51503 97603 85419 94601 10622) 1.8 76.2
DynAMO-BO-gEI  21.00%» 51,902 97404  g52(09) 94.8(01) 126(146) 2.0 79.4
Mixed x> DynAMO-BO-qEI ~ 14.6(% 519008 97405  g55(13) 80.8(7) 16.6¢5) 2.2 57.8
BO-qUCB 216 51702 979004 853011 93.8(0:6) 98.8(11) 1.8 74.8
DynAMO-BO-qUCB  214(%» 51702 97105  g5301 94.7(02) 109> 2.0 76.6
Mixed x> DynAMO-BO-qUCB  19.8(*3 52,0000 97404  856(13) 79.8(3:%) 14.9G3) 22 58.2
CMA-ES 16531 47800 96507  73,00180) 100(09 100(*0) 2.3 72.3
DynAMO-CMA-ES 12908  480010) 96735  g71.8(134) 94.5(07) 11278 2.0 74.3
Mixed x> DynAMO-CMA-ES ~ 23.009  51.8°% 98,009 83.8(99) 87.12D 48.6(168) 1.7 65.4
CoSyNE 24539  49.7G1) 98516 8660127 93.2(10) 91.920) 1.7 74.1
DynAMO-CoSyNE ~ 17.8(5%)  48.4(23) 96735  §0.2(129) 94.5(07 112078 23 75.0
Mixed x2 DynAMO-CoSyNE ~ 23.5G7) 52520 999D g0 6(215 83.9(26) 30.3¢42) 2.0 61.8
L, Coverage@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1
Dataset D 0.42 0.31 142 0.68 6.26 0.58 — —
Grad. 016010 020013 021010 0420018 0.00(00) 0.00(°00) 3.0 -1.44
DynAMO-Grad. 0.36(0%)  0.52(000)  146(038)  2.49(006) 6.47(1:24) 5.85(1:3%) 1.3 1.25
Mixed x> DynAMO-Grad.  0.16%)  0.54(002)  0.87(038) 2 20(10) 6.67(1:68) 1.61(003) 1.7 0.40
Adam 0110000 02200 23015 .48(03D 0.27(055) 0.24(04) 3.0 -1.35
DynAMO-Adam  0.33(099  0.550003) 144039  340(016) 7.06(07%) 6.91(071) 1.0 1.50
Mixed x> DynAMO-Adam  0.16%)  0.54(002) 47031 220010 6.67(168) 1.61(003) 2.0 0.33
BO-qEI  0.41(%%2  0.55(00D 237003 2 11(015) 7.84(001) 6.610%) 23 1.70
DynAMO-BO-qEI  0.42(°0D  0.56(00)  2.47(003) 5 54(0.03) 7.87(0-01) 7.92(0:04) 1.2 2.02
Mixed x2 DynAMO-BO-qEI 0390002 0.55(00D 239009 2 56(002) 6.11064) 1.36(012) 25 0.62
BO-qUCB  0.40(%02) 054000 240005 3 52(0:07) 7.78(0:04) 6.64(009 25 1.77
DynAMO-BO-qUCB  0.40(%9  0.55000D 2470007 2 54(005) 7.88(003) 7.80(°23) 1.2 2.00
Mixed x2 DynAMO-BO-qUCB  0.39°°%)  0.56(°0) 241005  253(0:06) 5.96(078) 1.3801 23 0.59
CMA-ES 033009 048009 218009  182(012) 3.26(142) 3.77(136) 2.3 0.36
DynAMO-CMA-ES  0.40°°%) 0,56 182072  254(0:05 4.75(216) 329015 17 0.62
Mixed x> DynAMO-CMA-ES  0.30%%)  0.52(005)  1.56(068)  1.97(019 5.58(1.68) 4.03G3M 20 0.71
CoSyNE ~ 0.10(%07)  0.22(010)  ,39(020)  ,27(013) 0.10(000) 0.10(°00) 2.8 -1.41
DynAMO-CoSyNE ~ 0.21(01D)  0.18(09  0.64(042  0.43(039) 1.85022) 09401 20 -0.90
Mixed x? DynAMO-CoSyNE ~ 0.200°%)  0.37(014)  0.74(047)  0,53(042) 3.85(279) 1.10(055) 1.2 -0.48
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black-box optimization experiments. The model is trained to learn a rollout of monotonic transi-
tions from low- to high- scoring design candidates using the offline dataset. Nguyen et al. (2023)
propose ExPT (i.e., Experiment Pretrained Transformers) as a task-agnostic method of pre-training
a transformer foundation model to learn an inverse modeling of designs from input reward scores
and associated contexts. DDOM (i.e., Denoising Diffusion Optimization Models) learns a diffu-
sion model conditioned on the oracle values in the offline dataset (Krishnamoorthy et al., 2023a).
Similarly, GTG (i.e., Guided Trajectory Generation) trains a diffusion model to learn from syn-
thetically constructed optimization trajectories conditioned on final scores. MINs (i.e., Model
Inversion Networks) from Kumar and Levine (2019) learn and optimize against an inverse map-
ping from reward scores to candidate designs.® Tri-Mentoring and ICT (i.e., Importance-aware
Co-Teaching) co-learn an ensemble of multiple surrogate models (Chen et al., 2023a; Yuan et al.,
2023). Separately, PGS (i.e., Policy-Guided Search) from Chemingui et al. (2024) learns a policy
to optimize against a surrogate model (although only limit their method to first-order optimization
algorithms), and Match-Opt from Hoang et al. (2024) proposes a black-box gradient matching al-
gorithm to learn better forward surrogate models. Finally, RGD (i.e., Robust-Guided Diffusion)
uses a forward surrogate model to guide the generative sampling process from a diffusion model
(Chen et al., 2024). Other model-free optimization methods have been proposed specifically for
the biological sequence design problems (Kim et al., 2023; Chen et al., 2023b; Jain et al., 2022); we
exclude these from our analysis and instead focus on task-agnostic optimization algorithms. We
also exclude Design Editing for offline Model-based Optimization (DEMO) (Yuan et al., 2024),
Noise-intensified Telescoping density-Ratio Estimation (NTRE) (Yu et al., 2024), and Ranking Mo-
dels (RaM) (Tan et al., 2025) from our analysis since there are no presently available open-source

implementations.

Experimental Results. We compare representative implementations of DynAMO (i.e., DynAMO
with Gradient Ascent (DynAMO-Grad.), Bayesian optimization with Upper Confidence Bound

acquisition function (DynAMO-BO-qUCB), and Covariance Matrix Adaptation Evolution Strat-

One might argue that MINs (Kumar and Levine, 2019) are also a form of model-based optimization, as the method
involves learning a surrogate function f, ' : R — X. However, the method proposes a design z given an input score
value, and therefore does not make available an output proxy score by which to rank candidate designs. We therefore
include MINs as a model-free optimization algorithm.
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egy (DynAMO-CMA-ES)) against other model-based optimization methods using the respec-
tive backbone optimizer described by the original authors (i.e., RoOMA from Yu et al. (2021) using
Adam Ascent, COMs from Trabucco et al. (2021) using Gradient Ascent, ROMO from Chen et al.
(2023c¢) using Gradient Ascent, GAMBO from Yao et al. (2024) using BO-qEI) against model-free
optimization methods in Supp. Tables D.7-D.9. We find that DynAMO-augmented optimizers
can be competitive in proposing high-quality designs—in particular, DynAMO-BO-qUCB achieves
both the second best Rank and Optimality Gap across all six tasks according to the Best@128 ora-
cle score metric. However, the improvement in diversity of designs using DynAMO is significant:
DynAMO-BO-qUCB achieves the best Rank and Optimality gap according to both the Pairwise
Diversity and L; Coverage metrics, and DynAMO-Grad. achieves the best Rank and Optimality
gap according to the Minimum Novelty metric. Furthermore, DynAMO-BO-qUCB attains the best
mean Pairwise Diversity score compared to the model-free optimization methods evaluated in 5
out of the 6 tasks assessed. Altogether, our results suggest that DynAMO is a promising technique
to propose a diverse set of high-quality designs compared with existing state-of-the-art offline op-

timization methods.
D.5. 7-Weighted Distribution Visualization

In Definition 4, we define the 7-weighted probability distribution to serve as the reference dis-
tribution for a generative policy to learn from in (6.15). This reference probability distribution is
important and should ideally capture the diversity of high-quality designs contained in the offline
dataset. To investigate if this is indeed the case, we plot the empirical 7-weighted distributions for
each of the six offline optimization tasks in our experimental evaluation suite using 7 = 1.0, which
is the value of the temperature hyperparameter used in our experiments in Table 6.1. The resulting
plots are shown in Figure D.1; in general, we can see that our 7-weighted reference distributions
weight optimal and near-optimal designs more heavily (i.e., a distribution with negative skew),

while still capturing a variety of different possible designs.
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Table D.7: Comparison of design quality against model-free optimization methods. We evalu-
ate DynAMO and other MBO methods against model-free optimization methods. We report the
maximum (resp., median) oracle score achieved out of 128 evaluated designs in the top (resp., bot-
tom) table. Metrics are reported mean (9% confidence interval) 5crog5 10 random seeds, where higher
is better. All metrics are multiplied by 100 for easier legibility. Bolded entries indicate average
scores with an overlapping 95% confidence interval to the best performing method. Bolded (resp.,
Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best)
for a given backbone optimizer.

Best@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1

Dataset D 43.9 59.4 60.5 88.9 40.0 88.4 — —

Grad. 90.043  80.9121)  60.2(89) 88.8(40) 36.0(68) 65.6(14%)  16.0 6.8

BO-qUCB  88.1G%% 862010 66407 121(13) 51.3(3:6) 84.5(08) 7.3 19.4
CMA-ES 87683 8620000 ¢671(10) 10669 49.0010) 72.2(01) 10.2 14.4
BONET 95500 92901 43 3(00) 97.3(00) 39.0007) 93.7(02) 8.0 16.8

DDOM  93.086 85305  35(04) 87.9(06) 44722 63.002D 13,0 9.4

ExPT 893657 84224 43300 93.0(08) 48.5(11.0) 82.3(23) 12.0 13.3

MINs  89.084 8306  £39(09) 93.1(07) 45.821) 91.5(11) 11.2 11.8

GIG 92100 7020000  33(00) 85.000) 52.5(00) 96.4(00) 9.7 13.1
Tri-Mentoring 82400 66609 68400  8g89(00) 50.9(11) 94,000 10.2 11.7
ICT 93334 66600 68400 88.9(00) 48914 95.5(11) 9.0 13.4

PGS 79.67% 67108  68.4(00) 88.9(00) 54.8(0:8) 72.3(00) 11.3 8.3

Match-Opt ~ 90.9%4 68408 330D 87.8(06) 35.2(23) 72.200) 15.5 6.2

RGD 87.9(42) 6870060  434(02) 90.2(03) 43.027) 88.5(11) 13.2 10.1

COMs 93164 67009 64600 97.1(16) 41.2(48) 91.8(09) 10.2 12.3

RoMA 96500  77800) 43 3(00) 84.7(00) 49.8(14) 95.7(16) 9.7 14.5

ROMO 98107 668010 63,008 91.8(09) 38.7(25) 87.8(09) 12.7 10.9

GAMBO  94.119 86302  66.807) 121(0-0) 50.8(3-3) 86.7(1:1) 4.8 20.8
DynAMO-Grad.  90.3%7) 86200 64425 91.2(00) 44.2(78) 89.8(32) 95 14.2
DynAMO-BO-qUCB 95119 8620000 66.7(15) 121(00) 48.1(49) 86.9(45) 6.3 20.5
DynAMO-CMA-ES  89.83¢ 857038 3909 1177 50.6(4®) 78.5(5) 9.3 17.5

Median@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap T

Dataset D 33.7 42.8 50.9 87.6 6.7 77.8 — —

Grad. 581061 586131  593(86) 85.3(77) 36.0(67) 651044 107 10.5

BO-qUCB  50.30% 62154 63300 86,606 31.7(12) 74.4(06) 6.8 11.5
CMA-ES 50.727) 7170104  ¢33(0.0) 83.9(10) 37.9(0.7) 59.3(109) 7.2 11.2
BONET 53.100) 46506 63,3000 91.2(0) 37.9(0.0) 92.1(0:0) 5.2 14.1

DDOM 55907 57608  3,3(00) 83.4(0D) 21.917) 576132 122 6.7

ExPT 447068 57048 33000 89.8(33) 34.1(123) 67.8(141) 9.3 9.5

MINs 41302 58005 33000 88.3(03) 32.3(16) 68.9(159) 9.7 8.8

GTG 43403 64200  33(00) 83.100) 28.0(00) 90.6(00) 9.3 12.2
Tri-Mentoring ~ 46.109  61.100 63,300 gg.9(00) 34.202) 88.400) 6.5 13.7
ICT 59539 61,100 577100 88.9(00) 37.01:2) 88.4(01) 7.0 15.4

PGS 40.726) 603007  584(00) 88.9(00) 28.2(05) 70.9(07) 12.3 8.0

Match-Opt  40.702 57905 63300 83201 14.509) 60500 15,0 3.4

RGD 41113 57409 63300 86.401) 20.7(06) 70.9(1:8) 12.3 6.7

COMs 43900 59005 63,300 93.2(77) 21.36:6) 89.9(10) 8.5 11.8

RoMA 50.143) 77400 433000 84.7(00) 34.9(18) 63.7(62) 7.3 12.4

ROMO 58.733) 37703 27402 61.8(26) 27.0006) 46.0017) 15.8 -6.8

GAMBO 46418 63463 33000 86.3(05) 28.9(11) 79.107) 7.8 11.3
DynAMO-Grad.  47.0%®  69.8¢0 61922 85904 23.4(85) 68.7021)  11.0 9.5
DynAMO-BO-qUCB  48.8(1%)  659G37) 3300 86505 22.7(20) 50.4046) 97 6.3
DynAMO-CMA-ES 45324 5869 593038 99,0021 22.5(:1) 60.6159  11.0 8.8
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Table D.8: Comparison of design diversity against model-free optimization methods. We eval-
uate DynAMO and other model-based methods against model-free optimization methods. We
report the pairwise diversity (resp., minimum novelty) oracle score achieved by the 128 evaluated
designs in the top (resp., bottom) table. Metrics are reported mean (%> confidence interval) 5crogg 10
random seeds, where higher is better. All metrics are multiplied by 100 for easier legibility. Bolded
entries indicate average scores with an overlapping 95% confidence interval to the best performing
method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate the
best (resp., second best) for a given backbone optimizer.

Pairwise Diversity@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1

Dataset D 65.9 57.3 60.0 36.7 66.0 85.7 — —
Grad. 12560  7.8(68) 7.9(78) 24.1(133) 0.0(0:0) 0.0(09) 18.7 -53.2

BO-qUCB  73.9(% 74304 99401 93605 198(10-3) 94139 3.8 435
CMA-ES 472012 446059  935(20) 66.2094) 12.8(06) 164(106) 10.8 95
BONET 46725 24604 149016 5.5(02) 0.2(00) 0.1(09) 17.3 -46.6
DDOM  51.3(10) 47103 219(36) 97.2(00) 1.90D) 50.7(131) 12.5 -16.9
ExPT 15306 165016 213018 5.3(07) 8.123) 0.2(00) 17.5 -50.8
MINs 67.003 56804 535631 34.1(26) 84.6(211) 4.3003) 11.8 -11.9
GIG 60900 44600 2.8(00) 0.9(00) 114.80-D) 2.7(00) 15.0 -24.2
Tri-Mentoring  58.500 57600 85500 39.9(00) 47.7(00) 62.5(00) 10.5 -3.3
ICT 44860 57500  g99(18) 70.3(86) 78.937) 164(08) 9.3 22.3

PGS 65810 57403 32000 39.9(00) 36.7(06) 162(07) 10.5 8.9

Match-Opt ~ 65.104 55901 99.8(00)  972(00) 10.904 202(05) 7.5 26.6

RGD 67.102 58402  99g(0.0) 97.3(0:0) 88.4(38) 76.2(07) 5.0 19.3

COMs  66.610) 57402 g1 6(49) 3.8(09) 99.5(258) 21.1(235) 10.7 -6.9
RoMA 21303 33800 5.9(02) 1.8(00) 49.4(61) 14.8(06) 17.2 -45.8
ROMO  62.108) 57101  539(06) 48.7(0.0) 51.7(317) 22.1(5) 115 -12.7

GAMBO  74.0000 74304  993(01) 93.3(04) 193(12) 17.765) 55 30.0
DynAMO-Grad. 66.9(¢9  68.2(108) 7720215 93 (12) 129(5:3) 104(561) 6.8 27.8
DynAMO-BO-qUCB  74.3(%%  74.4(06)  993(01) 93 5(0:6) 211(228) 175(447) 2.8 59.4
DynAMO-CMA-ES  73.600  731GD  7206GD 94,005 97.8(132) 292(835) 5.2 55.2

Minimum Novelty@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap 1

Dataset D 0.0 0.0 0.0 0.0 0.0 0.0 — —

Grad. 21239 51729 97469 79.5(197) 95(07) 102.2(61) 5.8 74.5

BO-qUCB  21.6(°3 517002 97904  g53(1.1) 93.8(00) 98.8(11) 6.0 74.8
CMA-ES 16531 47800 96507  73(180) 100(0-0) 100(00) 7.8 72.3
BONET 94.6(1% 38801 412003 10.3(0D) 1.3(00) 1.1(00) 14.7 31.2

DDOM  11.109 38601  965(09) 94.2(0.1) 98.0(0-1) 100(00) 9.3 73.1

ExPT 11106 39007 54220 15.6(12) 69.8(68) 3.5(09) 15.2 32.2

MINs 12204 38302 48729 22.17) 6.1 0.6 16.5 21.3

GTIG 13.8(00 37800  993(0.0) 99.4(0.0) 67.7(00) 0.2(00) 10.5 53.0
Tri-Mentoring 13900 31800 74700 75500 44.0000 64.300) 14.3 50.7
ICT 19312 31701 70804 75.6(00) 46.20049 66.2(07) 13.2 51.6

PGS 11504 33108 16,000 15.8(0:0) 45.0002) 74.80-D 16.3 32.7

Match-Opt ~ 12.10%  40.00D 985001 94.9(0-1) 91.9(0-1) 85.8(26) 8.7 70.5

RGD 12305 39002 98601 94.2(0.) 90.4(03) 90.5(3) 85 70.9

COMs 10903 31708 534010 13701 99.6(0-3) 100000 14.0 51.4

RoMA 18305  40.102  18.9(02) 95.3(00) 476249 5.102) 11.0 37.6

ROMO  16.10% 32901 5.007) 23.1(00) 78.5(05) 1533004 123 51.5

GAMBO 154003 51,802  978(03) 84.9(09) 85.1(04) 14.3(15) 8.8 58.2
DynAMO-Grad. 21.101 52203 98615 858010 95.004) 107.267) 3.8 76.7
DynAMO-BO-qUCB 21405 51,702 97,1009 85.3(11) 94.7(02) 10945 5.3 76.6
DynAMO-CMA-ES 12908 480010 96,733 818134 94.507) 112(78) 7.8 74.3
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Table D.9: Comparison of design diversity against model-free optimization methods (cont.). We
evaluate DynAMO and other model-based optimization methods against model-free optimization
methods. We report the L; coverage score achieved by the 128 evaluated designs. Metrics are
reported mean (9> confidence interval) 3crogs 10 random seeds, where higher is better. All metrics are
multiplied by 100 for easier legibility. Bolded entries indicate average scores with an overlapping
95% confidence interval to the best performing method. Bolded (resp., Underlined) Rank and
Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best) for a given optimizer.

L, Coverage@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank| Opt. Gap T
Dataset D 0.42 0.31 1.42 0.68 6.26 0.58 — —
Grad. 0.1610 20013  21(010) (420018 0.00(0-00) 0.00(0-00) 19.5 -1.44
BO-qUCB  0.40(002)  0,54(001)  240(005)  352(0:07) 7.79(004) 6.64(00%) 43 177
CMA-ES 0330005 048004 218004 182012 3.26(142) 3.78(1:36) 8.5 0.36
BONET 0.11(000)  22(000)  (72(0:02) () 54(0.00) 0.03(0:00) 0.07(0:00) 17.8 -1.33
DDOM  0.43(001)  (.29(000) (68005 ) g5(0.02) 9.24(023) 0.66011)  10.8 0.41
ExPT 0220005 02500 g0 (29003 0.45(001) 0.10000) 180 -1.29
MINs 043002 (30001 132003  70(003) 0.86(013) 0.4300) 110 -0.94
GTG  0.420000) (300000 1670000  1.96(0:00) 8.77(0.00) 0.31(0:00) 8.7 0.62
Tri-Mentoring ~ 0.48(%%)  .30(00)  1,08(000)  (53(000) 1.94(000) 3.79(000) 108 -0.26
ICT 0.34002) (30000 (90002 80005 0.56(001) 3.730002) 128 -0.51
PGS 045009 03000 140000 60000 1.92(0:00) 3.66000  10.0 -0.22
Match-Opt 04100 032000 0690000 .86(002) 5.26(0:02) 522000 87 0.52
RGD 0.42(001)  33(000) 69001  ge002) 4.08(013) 4.90(007) 9.0 0.27
COMs 0.49(02)  (31(000) 17170016  g1(009) 0.37011) 0.81(076) 11.0 -1.00
RoMA 028000 4600) (410002 (420001 1.87(006) 0.7900) 148 -0.91
ROMO 0.33(002)  30(000)  137(002)  (g2(002) 0.34(0-16) 613280 118 -0.11
GAMBO  0.40(003)  0,55(001) 5 3g(010) 3 53(0.05) 7.450:01) 1.29(0.08) 6.3 0.82
DynAMO-Grad. 036009 0.53(0:00)  146(038)  250(0.06) 6.47(124) 5.85(135) 6.7 1.25
DynAMO-BO-qUCB  0.40(°0%)  0.55(00D  247(007) 3 54(004) 7.88(003) 7.80(023) 2.8 2.00
DynAMO-CMA-ES  0.400%) 0560 182072  354(005) 4.75(216) 3.29(1:50) 6.3 0.62

190



—— T-Weighted Reference Distribution —— T-Weighted Reference Distribution —— T-Weighted Reference Distribution

~—— Uniform Sampling ~—— Uniform Sampling

Uniform Sampling

Probability Distribution

0 10 20 30 0 10 20 30 40 50 0 10 20 30 40 50 60
TFBind8 UTR ChEMBL
—— T-Weighted Reference Distribution —— T-Weighted Reference Distribution —— T-Weighted Reference Distribution

~—— Uniform Sampling ~—— Uniform Sampling Uniform Sampling

Probability Distribution

yiN

0 10 20 30 0 20 40 60 80
Molecule Superconductor D'Kitty

Figure D.1: Sample 7-weighted probability distributions. We plot (7 = 1.0)-weighted distribu-
tions p7,(y) (blue) versus the original distribution of oracle scores y in the public offline dataset
D (orange) for the 6 offline optimization tasks in our experimental evaluation suite: (1) TFBind8
(top left); (2) UTR (top middle); (3) ChEMBL (top right); (4) Molecule (bottom left); (5) Super-
conductor (bottom middle); and (6) D’Kitty (bottom right). DynAMO penalizes a model-based
optimization objective to encourage sampling policies to match the diversity of (high-scoring) de-
signs in the 7-weighted distribution. The z-axis represents the normalized oracle scores.
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D.6. Distribution Analysis of Quality and Diversity Results

In our experimental results in the main text and in the Appendices, we primarily focus on reporting
summative statistics: for example, the Best@128 oracle score and the average Pairwise Diversity
metric over the final batch of £ = 128 samples. In this section, we isolate a single representative
experimental run and plot the distribution of scores achieved by all & = 128 designs from a single

experimental run to better interrogate the robustness and empirical properties of DynAMO.

In Supp. Figure D.2, we first plot the distributions of the oracle reward score (") and minimum
novelty score min,¢p d(z!", 2') achieved by each of the k = 128 designs in the set {z!"}*_; proposed
by the CMA-ES optimizer with and without DynAMO augmentation in a single experimental run.
(Recall that D is the static, offline dataset of reference designs and d(-, ) is the normalized Lev-
enshtein distance metric for this task.) We see that in general, DynAMO not only enables the
optimizer to discover more optimal designs with higher probability, but also yields a wider-tailed
distribution of oracle scores compared to the baseline method. Separately, we see that DynAMO
augmentation decreases both the median and mode Minimum Novelty score compared to the base-

line method, in agreement with our discussion in Section D.2.

In the bottom row of Supp. Figure D.2, we visualize a heat map of pairwise diversity scores; that

xf,xf) forany 1 < i, j < k pair of gener-

is, the color of pixel (4, j) is correlated with the distance d(
ated designs proposed by the optimization method. Even a cursory visual inspection reveals that
DynAMO augmentation of the backbone CMA-ES optimizer significantly improves the pairwise

diversity of candidate designs when compared to the baseline method.
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Figure D.2: Distribution of generated design quality and diversity scores. We plot the distribu-
tions of the (top left) oracle score; (top right) minimum novelty; and (bottom) pairwise diversity
of the k = 128 proposed designs from a single representative experimental run using the CMA-ES
backbone optimizers with and without DynAMO on the TFBind8 task. Dashed blue (resp., dotted
green) lines in the top panels represent the mean score achieved by the Baseline CMA-ES (resp.,
DynAMO-CMA-ES) method from the experimental run.

D.7. Why Is Diversity Important?

Our principle motivation for obtaining a diverse sample of designs in offline MBO is to enable
downstream secondary exploration of other objectives that we might care about in real-world
applications. For example, given a batch of proposed candidates drugs that were optimized for
maximal therapeutic efficacy in treating a disease, we might then try to quantify each candidate’s
manufacturing cost, difficulty of synthesis, profile of potential side effects, and other objectives. In
this setting, obtaining highly similar designs from offline MBO may result in strong therapeutic

efficacy, but also equally unacceptable values of other secondary objectives.

To validate this motivating claim that diversity is important to obtain a wide range of secondary

objective values, we compare the range and variance of secondary objective values within a batch
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of proposed candidate designs. We consider the following 3 offline MBO tasks:

1. Vehicle Safety is continuous, 5-dimensional optimization problem from Liao et al. (2008) to
find an optimal set of car dimensions that minimize the total Mass of the vehicle. The problem
initially stems from work on multi-objective optimization (Blank and Deb, 2020; Liao et al.,
2008; Huo et al., 2022; Gonzalez de Oliveira et al., 2023), where the secondary goals are to (1)
minimize the worst-case Acceleration-induced biomechanical damage of the car occupants
in the event of a collision; and (2) minimize the worst-case toe board Intrusion of the vehicle
in the event of an ‘offset-frontal crash.” We treat the Mass as the offline MBO optimization
objective and Acceleration and Intrusion as the downstream secondary objectives. We negate
all objective values prior to max-min normalization as described in Section 6.4.2 to frame
this as a maximization problem in accordance with the setup in Table 6.1. An offline dataset
of n = 800 designs was synthetically constructed, and we used the oracle function from

Liao et al. (2008) to compute all 3 objective values.

2. Welded Beam is a continuous, 4-dimensional optimization problem (Ray and Liew, 2002) to
find an optimal set of dimensions for a welded steel beam that minimizes the total manu-
facturing Cost. Similar to the Vehicle task, this problem was initially proposed in the multi-
objective optimization literature (Blank and Deb, 2020; Liao et al., 2008; Kamil et al., 2021;
Deb et al., 2006) where the secondary goal is to (1) minimize the end Deflection of the beam.”
Again, we negate all objective values prior to max-min normalization as described in Sec-
tion 6.4.2 to frame this as a maximization problem. An offline dataset of n = 800 designs
was synthetically constructed, and we used the oracle function from Ray and Liew (2002) to

compute both objective values.

3. UTR is a discrete, 50-dimensional optimization problem from Angermueller et al. (2020a)
and Sample et al. (2019) with the goal of finding an optimal 50-bp DNA sequence that max-

imizes the gene expression from a 5" UTR DNA sequence. This is an offline MBO problem

"The original problem from Ray and Liew (2002) was proposed as a constrained optimization problem with 5 sets of
constraints on the maximum considered shear stress, bending stress, buckling load, and other material testing parame-
ters. To simplify our experimental setting, we consider the unconstrained version of the optimization problem here.
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from the Design-Bench benchmarking suite (Trabucco et al., 2022) that we use to evaluate of-
fline MBO algorithms in our main experimental results in Table 6.1 and elsewhere. However,
a secondary objective is to minimize the GC Content of the resulting DNA sequence, which
is correlated with the difficulty of cloning and sequencing the DNA sequence using stan-
dard DNA amplification and analysis methods in the laboratory setting (Benita et al., 2003;
Yakovchuk et al., 2006; Gardner et al., 2002). To evaluate this secondary objective, we use
the same experimental setting as for the initial UTR experiments described in Section 6.4.2
and evaluate the GC Content of the £ = 128 proposed designs as the secondary objective

according to Benita et al. (2003).

We used the standard deviation of secondary objective values achieved by a proposed set of designs
to quantify the range of secondary objective values, and the pairwise diversity metric (PD@128) to
quantify the diversity of designs. We evaluated both baseline and DynAMO-enhanced optimiza-
tion methods on the three tasks above (Supp. Table D.10). Our results consistently demonstrate
that a greater diversity score of the final proposed designs (i.e., higher PD@128 score) is corre-
lated with a greater range of captured secondary objective values. As a result, a diverse set of
designs (such as those proposed by DynAMO-enhanced optimization methods) can better enable

downstream evaluation of the trade-offs between different objectives for a given design.
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Table D.10: Pairwise diversity as a predictor for downstream secondary exploration. We report
the pairwise diversity achieved by 128 proposed designs (PD@128); and also the variance of the
distribution of oracle secondary objective values of those same 128 proposed designs. Note that
the secondary objectives are not explicitly optimized against in the offline MBO setting. Metrics
are reported mean (957 confidence interval) 401655 10 random seeds, where higher is better (i.e., more
diverse designs and better capture of the range of secondary objective values). All metrics are
multiplied by 100 for easier legibility.

Vehicle Safety Welded Beam UTR

Method PD@128 Acceleration Intrusion PD@128 Deflection PD@128 GC Content
Grad. 0.0 0.1(0:0) 0.0(:0) 0.0(:0) 0.1(03) 7.8(88) 0.7(07)
DynAMO-Grad.  2.5(°2) 12.6(0%) 10.7(0) 19.6(33) 31,703 68.2(108) 3.4(07)
Adam  0.0000 0.10:D 0.10:D 0.0000 1.5(10) 11.002D 4.06)
DynAMO-Adam ~ 2.2(0D) 12.6(00) 10.301:0) 11165 49,5213 72.364) 14.06:D
CMA-ES  0.0009 0.502) 0.402) 0.10-D 0.0000 4460159 36.5(83)
DynAMO-CMA-ES 8.6 28.5(108) 30.8(200) 43900 19.8(188) 73.16:D 42.023)
CoSyNE  0.0(00 0.6(0-D 0.50:D 0.100 16.8(6-% 12.708) 1.6(25)
DynAMO-CoSyNE ~ 1.9¢27) 4.042) 2.2(26) 55.1(53)  65.8(132) 20.3(23) 1.00:%)
BO-qEI 130D 7.504) 7.204) 46.320) 8.003) 73.8(0:5) 44.8(08)
DynAMO-BO-qEI ~ 2.4(01) 13.3(02) 10.5(02) 78.1(180)  26.6(21) 74.6(03) 45.7(06)
BO-qUCB  1.2(0D 5.7(04) 6.1004) 46.572) 7.8(02) 74.3(02) 45.304)
DynAMO-BO-qUCB  2.8(01) 12.3(02) 10.9(0-1) 63.942 29,019 74.4(06) 45.2005)
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